当前位置: 首页 > news >正文

做男鞋的网站好企业网站的在线推广方法有

做男鞋的网站好,企业网站的在线推广方法有,武汉网站建设,台州网站建设/推广公司目录 创建模型读取数据集训练AlexNet AlexNet 是由 Alex Krizhevsky、Ilya Sutskever 和 Geoffrey Hinton 在 2012 年提出的深度卷积神经网络,它在当年的 ImageNet 大规模视觉识别挑战赛(ILSVRC)中取得了显著的成绩,从而引起了深度…

目录

  • 创建模型
  • 读取数据集
  • 训练AlexNet

AlexNet 是由 Alex Krizhevsky、Ilya Sutskever 和 Geoffrey Hinton 在 2012 年提出的深度卷积神经网络,它在当年的 ImageNet 大规模视觉识别挑战赛(ILSVRC)中取得了显著的成绩,从而引起了深度学习和卷积神经网络(CNN)在计算机视觉领域的广泛关注。AlexNet 的成功标志着深度学习在图像识别和分类任务中的一个重大突破,它采用了以下关键技术和创新:

  • ReLU激活函数:AlexNet 首次在大规模的深度网络中使用了 Rectified Linear Unit(ReLU)激活函数,这有助于解决梯度消失问题,并加速了网络的训练过程。
  • Dropout 正则化:为了防止过拟合,AlexNet 引入了 Dropout 技术,这是一种在训练过程中随机丢弃一部分神经元的技术。
  • 最大池化层:AlexNet 使用了最大池化层来降低特征的空间尺寸,同时保持重要的特征信息。
    数据增强:为了提高模型的泛化能力,AlexNet 采用了图像数据增强技术,包括随机裁剪和水平翻转。
  • GPU 加速:AlexNet 利用了 GPU 并行计算的能力,显著提高了训练速度。
  • 深度架构:AlexNet 采用了8层深度网络结构,包括5个卷积层和3个全连接层,这在当时是一个相对较深的网络。
  • 局部响应归一化(LRN):在某些卷积层之后,AlexNet 使用了局部响应归一化来增强网络的泛化能力。

AlexNet 的成功不仅推动了深度学习在图像识别领域的研究,也为后续的深度学习模型,如 VGG、GoogLeNet 和 ResNet 等奠定了基础。它的出现是深度学习历史上的一个重要里程碑。

import torch
from torch import nn
from d2l import torch as d2l

创建模型

# 搭建网络
net = nn.Sequential(# 这里使用一个11*11的更大窗口来捕捉对象。# 同时,步幅为4,以减少输出的高度和宽度。# 另外,输出通道的数目远大于LeNetnn.Conv2d(1, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),# 减小卷积窗口,使用填充为2来使得输入与输出的高和宽一致,且增大输出通道数nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),# 使用三个连续的卷积层和较小的卷积窗口。# 除了最后的卷积层,输出通道的数量进一步增加。# 在前两个卷积层之后,汇聚层不用于减少输入的高度和宽度nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Flatten(),# 这里,全连接层的输出数量是LeNet中的好几倍。使用dropout层来减轻过拟合nn.Linear(6400, 4096), nn.ReLU(),nn.Dropout(p=0.5),nn.Linear(4096, 4096), nn.ReLU(),nn.Dropout(p=0.5),# 最后是输出层。由于这里使用Fashion-MNIST,所以用类别数为10,而非论文中的1000nn.Linear(4096, 10))

构造高度和宽度都为224的单通道数据,观察每一层的输出形状是否符合预期

X = torch.randn(1, 1, 224, 224)
for layer in net:X=layer(X)print(layer.__class__.__name__,'output shape:\t',X.shape)
Conv2d output shape:	 torch.Size([1, 96, 54, 54])
ReLU output shape:	 torch.Size([1, 96, 54, 54])
MaxPool2d output shape:	 torch.Size([1, 96, 26, 26])
Conv2d output shape:	 torch.Size([1, 256, 26, 26])
ReLU output shape:	 torch.Size([1, 256, 26, 26])
MaxPool2d output shape:	 torch.Size([1, 256, 12, 12])
Conv2d output shape:	 torch.Size([1, 384, 12, 12])
ReLU output shape:	 torch.Size([1, 384, 12, 12])
Conv2d output shape:	 torch.Size([1, 384, 12, 12])
ReLU output shape:	 torch.Size([1, 384, 12, 12])
Conv2d output shape:	 torch.Size([1, 256, 12, 12])
ReLU output shape:	 torch.Size([1, 256, 12, 12])
MaxPool2d output shape:	 torch.Size([1, 256, 5, 5])
Flatten output shape:	 torch.Size([1, 6400])
Linear output shape:	 torch.Size([1, 4096])
ReLU output shape:	 torch.Size([1, 4096])
Dropout output shape:	 torch.Size([1, 4096])
Linear output shape:	 torch.Size([1, 4096])
ReLU output shape:	 torch.Size([1, 4096])
Dropout output shape:	 torch.Size([1, 4096])
Linear output shape:	 torch.Size([1, 10])

读取数据集

本文使用Fashion-MNIST, 为了利用AlexNet的架构,将Fashion-MNIST的图像放大到224×224

batch_size = 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)

训练AlexNet

经验表明,随着网络规模的增大,适当降低学习率有助于获得更好的训练结果,与前一篇文章相比,使用了更低的学习率

lr, num_epochs = 0.01, 10
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

在这里插入图片描述

· 本文使用了大量d2l包,这极大地减少了代码编辑量,需要安装d2l包才能运行本文代码

封面图片来源
欢迎点击我的主页查看更多文章。
本人学习地址https://zh-v2.d2l.ai/
恳请大佬批评指正。

http://www.hotlads.com/news/6434.html

相关文章:

  • 重庆住房城乡建设厅网站首页app推广软件
  • 网站首页被k怎么办谷歌浏览器下载手机版安卓
  • 求职网站建设方案google网站推广
  • 住房与城乡建设部网站职责seo推广公司招商
  • 贵阳企业建站系统模板痘痘怎么去除有效果
  • 诸城网站制作关键词优化seo公司
  • wap网站开发流程精准引流的网络推广方法
  • 网站建设工作自查报告自媒体引流推广
  • wordpress备份数据北京网站优化经理
  • 酒泉网站建设有限公司如何在百度发广告
  • 关于网站建设的报告广告推广平台网站
  • 在黄石做政府网站关键词上首页的有效方法
  • 网站搭建培训学校佛山网站建设解决方案
  • 深圳 网站建设爱站网工具
  • 2003系统网站建设智推教育seo课程
  • 微网站建设制作设计google浏览器官方下载
  • 东至网站制作交换链接营销实现方式解读
  • 网页设计模板图片素材上海关键词优化按天计费
  • 帮黄色网站做推广今日国内新闻重大事件
  • 网站开发预算百度一下百度知道
  • 本地拖拽网站建设互联网推广怎么做
  • 网站建设电子书2022年热点营销案例
  • 建设网站的费用明细优秀网页设计作品
  • wordpress做淘宝客网站在线网站排名工具
  • 网站的积分系统怎么做的怎么找拉新推广平台
  • linux做网站服务器那个软件好百度关键词排名批量查询
  • 大学网站开发与管理课程心得体会搜索引擎营销成功的案例
  • 网站建设报价表模板百度竞价推广联系方式
  • 做网站 学php哪一部分今日国际新闻最新消息事件
  • 企业网站建设方案书 范本夫唯seo教程