当前位置: 首页 > news >正文

网站备案问题优化器

网站备案问题,优化器,山西省住房与城乡建设厅网站,大连网站建设资讯递归型枚举与回溯剪枝初识 1.枚举子集2.组合型枚举3.枚举排列4.全排列问题 什么是搜索?搜索,是一种枚举,通过穷举所有的情况来找到最优解,或者统计合法解的个数。因此,搜索有时候也叫作暴搜。搜索一般分为深度优先搜索…

递归型枚举与回溯剪枝初识

  • 1.枚举子集
  • 2.组合型枚举
  • 3.枚举排列
  • 4.全排列问题

  1. 什么是搜索?搜索,是一种枚举,通过穷举所有的情况来找到最优解,或者统计合法解的个数。因此,搜索有时候也叫作暴搜。搜索一般分为深度优先搜索(DFS)与宽度优先搜索(BFS)。
  2. 深度优先遍历 vs 深度优先搜索,宽度优先遍历 vs 宽度优先搜索。遍历是形式,搜索是目的。不过,在一般情况下,我们不会去纠结概念的差异,两者可以等同。
  3. 回溯与剪枝
  • 回溯:当在搜索的过程中,遇到走不通或者走到底的情况时,就回头。
  • 剪枝:在搜索过程中,剪掉重复出现或者不是最优解的分。

递归型枚举与回溯剪枝初识:

  • 画决策树
  • 根据决策树写递归

搜索的本质:对决策树进行一次遍历,直到将所有的情况搜集到为止。

1.枚举子集

B3622 枚举子集(递归实现指数型枚举)

在这里插入图片描述

解法:深搜

设一共有 3 人,分别是 1,2,3。「从前往后」考虑每一个人,针对当前这个人「选」或者「不选」,我们可以画出如下「决策树」:

在这里插入图片描述

设计递归函数:

  1. 重复子问题:针对某一位,「选」或者「不选」。因为最终结果要按照「字典序」输出,我们可以「先考虑不选」,然后「再考虑选」。
  2. 实现方式参考代码和注释,结合「决策树」一起看会很清晰。
#include<iostream>
#include<string>
using namespace std;const int N = 11;int n;
string path; //记录递归过程中,每⼀步的决策void dfs()
{if(path.size() == n){cout << path << endl; //path存着前n个⼈的决策 return;}//不选path += 'N';dfs();path.pop_back(); //回溯:恢复现场//选path += 'Y';dfs(); path.pop_back(); //回溯:恢复现场
}int main()
{cin >> n;dfs();return 0;
}

2.组合型枚举

P10448 组合型枚举

在这里插入图片描述

解法:深搜

设 n = 4, m = 3,「从前往后」考虑 3 个位置应该选哪个数,我们可以画出如下决策树:

在这里插入图片描述

设计递归函数:

  1. 重复子问题:当前这一位,应该放哪个数上去。因为这是一个「组合」问题,不涉及排列,所以我们当前位置开始放的数,应该是「上次决策的数的下一位」。
  2. 实现方式参考代码和注释,结合「决策树」一起看会很清晰。
#include<iostream>
#include<vector>
using namespace std;int n, m;
vector<int> path; //记录递归过程中,每⼀步的决策void dfs(int pos)
{if(path.size() == m){for(auto& e : path) cout << e << " ";cout << endl;return;}for(int i = pos; i <= n; i++){path.push_back(i);dfs(i + 1);path.pop_back(); //回溯:恢复现场}
}int main()
{cin >> n >> m;dfs(1);return 0;
}

3.枚举排列

B3623 枚举排列(递归实现排列型枚举)

在这里插入图片描述

解法:深搜

设 n = 3, k = 2,一共要选出两个数,可以依次「考虑要选出来的数」是谁,画出如下决策树:

在这里插入图片描述

设计递归函数:

  1. 重复子问题:考虑这一位要放上什么数。因为是「排列」问题,所以我们直接从 1 开始枚举要放的数。
  2. 剪枝:在这一条路径中,我们「不能选择之前已经选择过的数」,需要用到辅助数组
  3. 实现方式参考代码和注释,结合「决策树」一起看会很清晰。
#include<iostream>
#include<vector>
using namespace std;const int N = 15;int n, k;
vector<int> path; //记录递归过程中,每⼀步的决策
bool vis[N]; //辅助数组:标记哪些数已经选过 void dfs()
{if(path.size() == k){for(auto& e : path) cout << e << " ";cout << endl;return;}for(int i = 1; i <= n; i++){if(vis[i] == false){vis[i] = true;path.push_back(i);dfs();//回溯:恢复现场path.pop_back();vis[i] = false;}}
}int main()
{cin >> n >> k;dfs();return 0;
}

4.全排列问题

P1706 全排列问题

在这里插入图片描述

解法:深搜

跟上一道题的决策一样,我们可以枚举每一位应该放上什么数,只不过少了 k 的限制。剪枝的策略还是一样的,那就是在路径中,「不能选择之前已经选过的数」。

在这里插入图片描述

#include<iostream>
#include<vector>
using namespace std;const int N = 15;int n;
vector<int> path; //记录递归过程中,每⼀步的决策
bool vis[N]; //辅助数组:标记哪些数已经选过void dfs()
{if(path.size() == n){for(auto& e : path) printf("%5d", e);cout << endl;return;}for(int i = 1; i <= n; i++){if(vis[i] == false){vis[i] = true;path.push_back(i);dfs();//回溯:恢复现场path.pop_back();vis[i] = false;}}
}int main()
{cin >> n;dfs();return 0;
}
http://www.hotlads.com/news/5654.html

相关文章:

  • 网站设计 分辨率互联网营销的五个手段
  • 饮料公司网站模板网站怎么做到秒收录
  • 各类东莞微信网站建设软文素材网
  • 中装建设股价网络推广的调整和优化
  • 重庆网站建设哪家公司好全网优化推广
  • 零基础月做网站多久百度网盘官方下载
  • 营销网站有四大要素构成搜索引擎推广成功的案例
  • 苹果id钓鱼网站制作网站推广培训
  • 网站开发用什么语言最好数字营销软件
  • 网站免费打包ios神马快速排名优化工具
  • 怎么查网站的外链数量重庆seo俱乐部
  • 中山网站制作设计青岛网站制作公司
  • 熊岳网站怎么做广州网站建设公司
  • 网站建设与管理实训主要内容网站平台怎么推广
  • 网站建设顾问英语外链吧
  • 武汉免费做网站百度seo和谷歌seo有什么区别
  • 长春做网站要多少钱java培训机构十强
  • 官网设计多少钱关键词优化简易
  • 不良网站正能量进入窗口seo网站优化培训
  • 做3d图的网站有哪些软件磁力天堂最佳搜索引擎入口
  • 平板做网站服务器兰州模板网站seo价格
  • 单位如何做网站宣传谷歌外链
  • 做网站建设的网络公司经营范围怎样填seo超级外链发布
  • php网站开发视频百度人工服务热线24小时
  • 成都有哪些好玩的地方和景点长春关键词优化报价
  • 免费建.com的网站广州网站快速优化排名
  • 品牌高端网站制作企业网页设计与推广
  • 南京做网站建设的公司哪家好小红书搜索指数
  • 公司网站关键词优化怎么做关键词排名工具有哪些
  • html网站模板源码产品50个关键词