当前位置: 首页 > news >正文

网站建设 代理福州seo网络推广

网站建设 代理,福州seo网络推广,企业官方网站怎么查,可以完成交易的网站 做文章目录逻辑斯谛回归二项逻辑斯谛回归模型极大似然估计多项逻辑斯谛回归模型总结归纳逻辑斯谛回归 写在前面:逻辑斯谛回归最初是数学家 Verhulst 用来研究人口增长是所发现的,是一个非常有趣的发现过程, b 站有更详细的背景及过程推导&…

文章目录

      • 逻辑斯谛回归
      • 二项逻辑斯谛回归模型
      • 极大似然估计
      • 多项逻辑斯谛回归模型
      • 总结归纳

逻辑斯谛回归

写在前面:逻辑斯谛回归最初是数学家 Verhulst 用来研究人口增长是所发现的,是一个非常有趣的发现过程, b 站有更详细的背景及过程推导,在此不再赘述:https://www.bilibili.com/video/BV1No4y1o7ac/?p=59

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-k9DMmgs6-1677676936475)(逻辑斯谛回归.assets/image-20230301153119470.png)]

逻辑斯谛分布的标准形式:
F(x)=11+e−xF(x) = \frac{1}{1 + e^{-x}} F(x)=1+ex1

f(x)=e−x(1+e−x)2f(x) = \frac{e^{-x}}{(1 + e^{-x})^2} f(x)=(1+ex)2ex

  • 分布函数是一条 SSS 形曲线,该曲线也被称为 sigmoid 曲线,关于点 (0,12)(0,\frac{1}{2})(0,21) 中心对称。
  • 概率密度函数一条钟型曲线,中间高两端低,关于 x=0x = 0x=0 对称,在此处取得最大值 (人口增速最大时刻)。

逻辑斯谛回归的一般形式:

X\rm XX 是连续随机变量, X\rm XX 服从逻辑斯谛分布是指 X\rm XX 具有下列分布函数和概率密度:
F(x)=P(X⩽x)=11+e−(x−μ)/γF(x)=P(X\leqslant x)={\frac{1}{1+\mathrm{{e}}^{-(x-\mu)/\gamma}}}\\ F(x)=P(Xx)=1+e(xμ)/γ1

f(x)=F′(x)=e−(x−μ)/γγ(1+e−(x−μ)/γ)2f(x)=F^{\prime}(x)={\frac{\mathrm{e}^{-(x-\mu)/\gamma}}{\gamma(1+\mathrm{e}^{-(x-\mu)/\gamma})^{2}}} f(x)=F(x)=γ(1+e(xμ)/γ)2e(xμ)/γ

式中, μ\muμ 为位置参数, γ>0\gamma > 0γ>0 为形式参数。

  • 分布函数是一条 SSS 形曲线,该曲线也被称为 sigmoid 曲线,关于点 (μ,12)(\mu,\frac{1}{2})(μ,21) 中心对称。
  • 概率密度函数一条钟型曲线,中间高两端低,关于 x=μx = \mux=μ 对称,在此处取得最大值 14γ\frac{1}{4 \gamma}4γ1 (人口增速最大时刻)。

二项逻辑斯谛回归模型

P(Y=1∣x)=exp⁡(w⋅x+b)1+exp⁡(w⋅x+b)P(Y=1 \mid x)=\frac{\exp (w \cdot x+b)}{1+\exp (w \cdot x+b)} P(Y=1x)=1+exp(wx+b)exp(wx+b)

P(Y=0∣x)=11+exp⁡(w⋅x+b)P(Y=0 \mid x)=\frac{1}{1+\exp (w \cdot x+b)} P(Y=0x)=1+exp(wx+b)1

其中,x∈Rnx \in {\bf R^n}xRn 是输入,Y∈0,1Y \in {0,1}Y0,1 是输出,w∈Rnw \in {\bf R^n}wRnb∈Rnb \in {\bf R^n}bRn 是参数,www 称为权值向量,bbb 称为偏置,w⋅xw \cdot xwxxxxxxx 的内积。

为了方便,将权重向量和输入向量加以扩充,仍记为 wwwxxx ,则有:
ω=(ω(1),ω(2),⋯,ω(n),b)T,x=(x(1),x(2),⋯,x(n),1)T,\omega=\left(\omega^{(1)}, \omega^{(2)}, \cdots, \omega^{(n)}, b\right)^T, \quad \quad x=\left(x^{(1)}, x^{(2)}, \cdots, x^{(n)}, 1\right)^T, ω=(ω(1),ω(2),,ω(n),b)T,x=(x(1),x(2),,x(n),1)T,
逻辑分布函数重写为:
P(Y=1∣x)=ew⋅x1+ew⋅xP(Y=1 \mid x)=\frac{e^{w \cdot x}}{1 + e^{w \cdot x}} P(Y=1x)=1+ewxewx

P(Y=0∣x)=11+ew⋅xP(Y=0 \mid x)=\frac{1}{1 + e^{w \cdot x}} P(Y=0x)=1+ewx1

极大似然估计

二项分布:
P(Y)={1−p,Y=0p,Y=1=(1−p)1−YpYP(Y)=\left\{\begin{array}{ll} 1-p, & Y=0 \\ p, & Y=1 \end{array}=(1-p)^{1-Y} p^Y\right. P(Y)={1p,p,Y=0Y=1=(1p)1YpY
对于 (xi,yi)(x_i, y_i)(xi,yi) ,有:
P(Y=yi∣xi)=(1−pi)1−yipiyiP(Y = y_i | x_i) = (1 - p_i)^{1 - y_i} p_i^{y_i} P(Y=yixi)=(1pi)1yipiyi
其中:
pi=ew⋅xi1+ew⋅xi1−pi=11+ew⋅xi\begin{align} p_i = \frac{e^{w \cdot x_i}}{1 + e^{w \cdot x_i}}\\ 1 - p_i = \frac{1}{1 +e^{w \cdot x_i}} \end{align} pi=1+ewxiewxi1pi=1+ewxi1
对于数据集 T=(X1,y1),(x2,y2),⋯,(xN,yN)T = {(X_1, y_1), (x_2, y_2), \cdots, (x_N, y_N)}T=(X1,y1),(x2,y2),,(xN,yN) 出现的概率:
∏i=1N(1−pi)1−yipiyi\prod_{i = 1}^N (1 - p_i)^{1 - y_i} p_i^{y_i} i=1N(1pi)1yipiyi
该概率只与 www 有关,即可得关于 www 的似然函数:
L(w)=∏i=1N(1−pi)1−yipiyiL(w) = \prod_{i = 1}^N (1 - p_i)^{1 - y_i} p_i^{y_i} L(w)=i=1N(1pi)1yipiyi
对数似然函数:
log⁡∏i=1Npiyi(1−pi)1−yi=∑i=1N[yilog⁡pi+(1−yi)log⁡(1−pi)]=∑i=1N[yilog⁡pi1−pi+log⁡(1−pi)]\begin{align} \log \prod_{i = 1}^{N} p_i^{y_i} (1 - p_i)^{1 - y_i} &= \sum_{i = 1}^{N}[y_i \log p_i + (1 - y_i) \log(1-p_i)]\\ &= \sum_{i = 1}^{N}[y_i \log \frac{p_i}{1 - p_i} + \log(1 - p_i)] \end{align} logi=1Npiyi(1pi)1yi=i=1N[yilogpi+(1yi)log(1pi)]=i=1N[yilog1pipi+log(1pi)]
代入(12)(13)式:
L(w)=∑i=1N[yiw⋅xi−log⁡(1+ew⋅xi)]L(w) = \sum_{i = 1}^{N}[y_i \ w \cdot x_i - \log(1 + e^{w \cdot x_i})] L(w)=i=1N[yi wxilog(1+ewxi)]
这样,问题就变成了以对数似然函数为目标函数的最优化问题,可以应用极大似然估计法估计模型参数,从而得到逻辑斯谛回归模型。逻辑斯谛回归学习中通常采用的方法是梯度下降法拟牛顿法

多项逻辑斯谛回归模型

二项逻辑斯谛回归模型可将其推广到多项逻辑斯谛回归模型(multi-nominal logistic regression model),用于多类分类。假设离散型随机变量 YYY 的取值集合是 1,2,⋯,K{1,2,\cdots, K}1,2,,K ,那么多项逻辑斯谛回归模型是:
P(Y=k∣x)=exp⁡(wk⋅x)1+∑k=1K−1exp⁡(wk⋅x),k=1,2,⋯,K−1P(Y=K∣x)=11+∑k=1K−1exp⁡(wk⋅x)\begin{align} P(Y&=k \mid x)=\frac{\exp \left(w_k \cdot x\right)}{1+\sum_{k=1}^{K-1} \exp \left(w_k \cdot x\right)}, \quad k=1,2, \cdots, K-1 \\ P(Y&=K \mid x)=\frac{1}{1+\sum_{k=1}^{K-1} \exp \left(w_k \cdot x\right)} \end{align} P(YP(Y=kx)=1+k=1K1exp(wkx)exp(wkx),k=1,2,,K1=Kx)=1+k=1K1exp(wkx)1
这里,x∈Rn+1x \in {\bf R^{n+1}}xRn+1wk∈Rn+1w_k \in {\bf R^{n+1}}wkRn+1

总结归纳

  • 逻辑斯谛回归归根结底是将分类问题用回归模型来解决。
  • 正态分布是在给定均值和方差的情况下具有最大熵的分布,这样的假设可以使得数据携带的信息量最大。通常在没有任何假设的情况下,连续型数据常被假设为正态分布,离散型数据常被假设为等概率分布。
  • P(Y=1∣x)+P(Y=0∣x)=1P(Y=1 \mid x) + P(Y=0 \mid x) = 1P(Y=1x)+P(Y=0x)=1
  • 逻辑斯谛回归学习中通常采用的方法是梯度下降法拟牛顿法
  • 逻辑回归模型不局限于输入变量和输出变量之间是否存在线性关系,可以通过 sigmoid 函数代替非连续型函数,当 sigmoid 函数大于等于 0.5时即可判断类别。
  • 逻辑回归的输入变量可以是连续变量,也可以是离散变量
  • 参数估计:说的是已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果推出参数的大概值。
  • 极大似然估计:极大似然估计就是建立在参数估计的思想上,已知某个参数能使这个样本出现的概率最大,我们当然不会再去选择其他小概率的样本,所以干脆就把这个参数作为估计的真实值。
  • sigmoid 激活函数在深度学习中应用广泛,逻辑斯谛回归更是在分类问题中被大量使用。
http://www.hotlads.com/news/5488.html

相关文章:

  • 做网站的三年规划外包网络推广营销
  • 如何建一个公司的网站营销咨询顾问
  • 网站制作潍坊sem与seo的区别
  • 做网站的如何找客户网站运营工作的基本内容
  • 优秀的手机网站标准学生个人网页制作成品代码
  • 企业网站建设 知乎温州seo招聘
  • 招聘网站开发源码无锡seo公司
  • 网站建设温州企业邮箱哪个好
  • 谁会在掏宝网上做网站互联网推广方案
  • 网站的费用可以做无形资产吗百度手机版网址
  • 最佳网站设计更先进的seo服务
  • 战鼓网这种网站怎么做中文域名交易网站
  • 银行做网站视频中国最好的网络营销公司
  • 网站做支付宝 微信模块网络广告策划方案范文
  • dede门户网站模板下载优秀的网页设计网站
  • 深圳宝安区做网站的公司seo咨询解决方案
  • github网站使用教程账号seo是什么
  • 阿里云服务器上做淘宝客网站百度问一问人工客服怎么联系
  • 东莞网站设计知名乐云seo外链推广是什么意思
  • wordpress 最受欢迎文章网络优化工作内容
  • 去哪找网站建设公司最新热搜新闻
  • 网站如何做业务百度投流
  • 网站 规划公司网站页面设计
  • 做网站需要学什么专业seo教学视频教程
  • 专业国外网站建设免费自己制作网站
  • 文化传媒 网站设计seo技术培训海南
  • 第三方商城网站开发搜索引擎优化学习
  • 做网站兴趣爱好google网址直接打开
  • 做电影网站采集什么意思排名sem优化软件
  • 枣庄手机网站建设公司免费的云服务器有哪些