当前位置: 首页 > news >正文

网站建设勹金手指科捷14上海专业seo公司

网站建设勹金手指科捷14,上海专业seo公司,建设网站需要什么步骤,新疆网站制作本章将会详细讲解二叉树遍历的四种方式,分别为前序遍历、中序遍历、后续遍历和层序遍历。在学习遍历之前,会先带大家回顾一下二叉树的基本概念。学习二叉树的基本操作前,需要先创建一颗二叉树,然后才能学习其相关的基本操作&#…

本章将会详细讲解二叉树遍历的四种方式,分别为前序遍历、中序遍历、后续遍历和层序遍历。

在学习遍历之前,会先带大家回顾一下二叉树的基本概念。学习二叉树的基本操作前,

需要先创建一颗二叉树,然后才能学习其相关的基本操作,考虑到我们刚刚接触二叉树,

为了能够先易后难地进行讲解,我们将暂时手动创建一颗简单的二叉树,用来方便大家学习。

等二叉树结构了解的差不多后,后期我们会带大家研究二叉树地真正的创建方式。

1.二叉树概念

复习链接:

比特数据结构与算法(第四章_上)树和二叉树和堆的概念及结构_GR C的博客-CSDN博客

二叉树是什么?① 空树 ② 非空:根节点、根节点的左子树与根节点的又子树组成的。

解读:从概念中我们不难看出,二叉树的定义是递归式的。因此后续基本操作中,

我们基本都是按照该概念来实现的!我们可以来看一下,我们不去看 A,我们来看 A 的左子树,

把 B 看作为根节点,又是颗二叉树。

所以,我们可以通过采用递归的手法来实现二叉树。

2.二叉树定义

#define _CRT_SECURE_NO_WARNINGS 1#include<stdio.h>typedef int BTDataType;typedef struct BinaryTreeNode 
{struct BinaryTreeNode* left;       // 记录左节点struct BinaryTreeNode* right;      // 记录右节点BTDataType data;                   // 存储数据
} BTNode;//创建新节点
BTNode* CreateNode(BTDataType x) 
{BTNode* new_node = (BTNode*)malloc(sizeof(BTNode));if (new_node == NULL){printf("malloc failed!\n");exit(-1);}new_node->data = x;new_node->left = new_node->right = NULL;return new_node;
}//手动创建二叉树 
BTNode* CreateBinaryTree() 
{BTNode* nodeA = CreateNode('A');BTNode* nodeB = CreateNode('B');BTNode* nodeC = CreateNode('C');BTNode* nodeD = CreateNode('D');BTNode* nodeE = CreateNode('E');BTNode* nodeF = CreateNode('F');nodeA->left = nodeB;         //           AnodeA->right = nodeC;        //       B        CnodeB->left = nodeD;         //    D        E    FnodeC->left = nodeE;       nodeC->right = nodeF;        return nodeA;
}int main(void)
{BTNode* root = CreateBinaryTree();
}

3.二叉树深度优先遍历

学习二叉树结构,最简单的方式就是遍历。所谓二叉树遍历,就是按照某种特定的规则,一次对二叉树中的节点进行相应的操作,并且每个节点只操作一次。 访问节点所做的操作要看具体的应用问题。遍历是二叉树上最重要的运算之一,也是二叉树上进行其他运算的基础。

二叉树遍历(Traversal):沿着某条搜索路线,依次对树中每个结点均做一次且仅做一次访问。 按照规则,二叉树的遍历有:前序 / 中序 / 后序 的递归结构遍历。除了前序、中序和后续遍历外,我们还可以对二叉树进行层序遍历

比如二叉树的中序遍历:

3.1二叉树前序遍历

前序遍历(Preorder Traversal):访问根节点的操作发生在遍历其右子树之前。

即,首先访问根结点,然后遍历左子树,最后遍历右子树。

代码实现前序遍历:

//二叉树前序遍历
void PreOrder(BTNode* root)
{//首先判断根是否为空,为空就返回if (root == NULL){printf("NULL ");    // 暂时打印出来,便于观察       return;}//走到这里说明不为空,根据前序遍历,先访问根节点printf("%c ", root->data);//然后遍历左子树(利用递归)PreOrder(root->left);//最后遍历右子树(利用递归)PreOrder(root->right);//           A//       B        C//    D        E    F        前序:根 左 右//执行输出:  A B D NULL NULL NULL C E NULL NULL F NULL NULL
}

① 首先判断根是否为空,如果根为空,则返回。这里为了表示,我们把空节点以 " Ø " 打印出来。

② 如果跟不为空,这说明有数据。由于是前序遍历(Preorder),前序遍历是先访问根节点,然后遍历左子树,最后再遍历右子树。所以,我们这里先要访问的是根节点,我们把根节点的数据打印出来。

③ 然后我们需要遍历左子树,这时我们利用递归就可以实现。将根节点 root 的左数 left 传入 PreOrder 函数(将其左树看作根),一直递归下去,直到碰到 root == NULL 则返回。

④ 最后,遍历完左子树后遍历右子树。利用递归,方法同上。

3.2二叉树中序遍历

递归的中序和后序和前序差不多 顺序换一下就行

//二叉树中序遍历
void InOrder(BTNode* root) 
{if (root == NULL) {printf("NULL ");  return;}InOrder(root->left);printf("%c ", root->data);InOrder(root->right);//           A//       B        C//    D        E    F         中序:左  根  右//执行输出:NULL D NULL B NULL A NULL E NULL C NULL F NULL
}

3.3二叉树后序遍历

void PostOrder(BTNode* root) 
{if (root == NULL) {printf("NULL ");return;}PostOrder(root->left);PostOrder(root->right);printf("%c ", root->data);//           A//       B        C//    D        E    F        后序:左  右  根//执行输出:NULL NULL D NULL B NULL NULL E NULL NULL F C A
}

3.4二叉树深度优先遍历完整代码:

#define _CRT_SECURE_NO_WARNINGS 1#include<stdio.h>typedef int BTDataType;typedef struct BinaryTreeNode 
{struct BinaryTreeNode* left;       // 记录左节点struct BinaryTreeNode* right;      // 记录右节点BTDataType data;                   // 存储数据
} BTNode;//创建新节点
BTNode* CreateNode(BTDataType x) 
{BTNode* new_node = (BTNode*)malloc(sizeof(BTNode));if (new_node == NULL){printf("malloc failed!\n");exit(-1);}new_node->data = x;new_node->left = new_node->right = NULL;return new_node;
}//手动创建二叉树 
BTNode* CreateBinaryTree() 
{BTNode* nodeA = CreateNode('A');BTNode* nodeB = CreateNode('B');BTNode* nodeC = CreateNode('C');BTNode* nodeD = CreateNode('D');BTNode* nodeE = CreateNode('E');BTNode* nodeF = CreateNode('F');nodeA->left = nodeB;         //           AnodeA->right = nodeC;        //       B        CnodeB->left = nodeD;         //    D        E    FnodeC->left = nodeE;       nodeC->right = nodeF;        return nodeA;
}
//二叉树前序遍历
void PreOrder(BTNode* root)
{//首先判断根是否为空,为空就返回if (root == NULL){printf("NULL ");    // 暂时打印出来,便于观察       return;}//走到这里说明不为空,根据前序遍历,先访问根节点printf("%c ", root->data);//然后遍历左子树(利用递归)PreOrder(root->left);//最后遍历右子树(利用递归)PreOrder(root->right);//           A//       B        C//    D        E    F        前序: 根 左 右//执行输出:  A B D NULL NULL NULL C E NULL NULL F NULL NULL
}//二叉树中序遍历
void InOrder(BTNode* root) 
{if (root == NULL) {printf("NULL ");  return;}InOrder(root->left);printf("%c ", root->data);InOrder(root->right);//           A//       B        C//    D        E    F        中序:左 根 右//执行输出:NULL D NULL B NULL A NULL E NULL C NULL F NULL
}//二叉树后序遍历
void PostOrder(BTNode* root) 
{if (root == NULL) {printf("NULL ");return;}PostOrder(root->left);PostOrder(root->right);printf("%c ", root->data);//           A//       B        C//    D        E    F        后序:左  右  根//执行输出:NULL NULL D NULL B NULL NULL E NULL NULL F C A
}
int main()
{BTNode* root = CreateBinaryTree();PreOrder(root);printf("\n");InOrder(root);printf("\n");PostOrder(root);
}

4.二叉树广度优先遍历

4.1层序遍历

层序遍历(Level Traversal):设二叉树的根节点所在的层数为1的情况下,

从二叉树的根节点出发,首先访问第1层的树根节点,然后再从左到右访问第2层上的节点。

接着是第3层的节点……以此类推,自上而下、从左向右地逐层访问树的节点。

该如何实现层序遍历呢? 我们可以利用队列的性质来实现!

我们之前再讲过队列,这里你可以选择自己实现一个队列。

如果不想实现就直接复制即可,因为我们这里重点要学的是层序遍历!

链接:比特数据结构与算法(第三章_下)队列的概念和实现(力扣:225+232+622)_GR C的博客-CSDN博客

本篇完。

下一篇写写二叉树的OJ题,二叉树就暂时结束了

http://www.hotlads.com/news/5430.html

相关文章:

  • 厦门建设工程信息造价网站友情链接怎么连
  • 合肥高端网站开发企业建网站一般要多少钱
  • 自己做的网站怎么上传到网络百度在全国有哪些代理商
  • 手机网站技术方案济南seo公司报价
  • 莱州网站制作seo优化前景
  • 建设的网站百度搜不到网络域名怎么查
  • 创业小项目山西网络营销seo
  • 传奇私服广告网站怎么做指数基金是什么意思
  • wordpress最快仿站郑州今天刚刚发生的新闻
  • jsp购物网站开发 论文如何做网站推广优化
  • 企业建立网站的原因欧美seo查询
  • b2b网站优化怎么做seo搜索优化邵阳
  • 怎么用新浪云做淘宝客网站百度网络推广怎么收费
  • 视频网站怎么做算法长沙seo推广优化
  • 网站策划做营销推广高质量外链平台
  • 家装网站建设网络推广员的工作内容和步骤
  • php网站开发课程网店运营在哪里学比较好些
  • 关注网站怎么做网站seo视频
  • 网站备案情况查询贵州seo技术查询
  • 如何选择电商网站建设普通话手抄报简单又漂亮
  • 海康打开网站显示建设中百度 个人中心首页
  • 北京有一个公司打电话做网站认证seo赚钱
  • 网站建设合同要求百度浏览器官网
  • 做网站开发很赚钱吗南京市网站seo整站优化
  • 手机做网站的软文广告案例
  • 曲阜网站制作合肥seo网站建设
  • 苏州建设网官网台州关键词首页优化
  • 网站建设好学么电商沙盘seo裤子关键词
  • 前端制作个人网站什么叫做优化
  • 哪个浏览器可以看禁止访问的网站云优化软件