当前位置: 首页 > news >正文

网站首页只显示域名做个网站

网站首页只显示域名,做个网站,功能 wordpress.org,布吉网站建设公司想学习AI,还是需要从头到尾跑一边流程,最近看到这个项目 minimind, 我也记录下学习到的东西,需要结合项目的readme看。 1、github链接 https://github.com/jingyaogong/minimind?tabreadme-ov-file 2、硬件环境:英伟达4070ti …

想学习AI,还是需要从头到尾跑一边流程,最近看到这个项目 minimind, 我也记录下学习到的东西,需要结合项目的readme看。

1、github链接

https://github.com/jingyaogong/minimind?tab=readme-ov-file

2、硬件环境:英伟达4070ti

3、软件环境:

1、使用conda环境

conda create --name minimind python=3.9

2、python==3.9
3、torch版本安装方式:

pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121

官网:https://pytorch.org/
在这里插入图片描述

4、安装英伟达显卡驱动

5、安装cuda版本:12.1
在这里插入图片描述
6、按照readme的说法,下载了四个数据集文件
**

4、为什么需要训练一个词汇表:

找出高频词汇

5、将预训练用的文本语料按照词汇表进行分割

6、语料分割之后,还需要进行对句子进行掩码语料的分割,用于训练阶段预测下一个词

你知道光速是多少吗?

  • 你 * * * * * * * * *
  • 你知 * * * * * * * *
  • 你知道 * * * * * * *
  • 你知道光 * * * * * *
  • 你知道光速 * * * * *
  • 你知道光速是 * * * *
  • 你知道光速是多 * * *
  • 你知道光速是多少 * *

7、给语料添加开始符号,结束符号

8、直接开始训练

执行python命令:

python data_process.py: 这一步具体做什么还在看,猜测就是按照特定的策略从超大文本预料当中获取自己需要的语料。

python 1-pretrain.py: 这一步开始训练,耗费时间太长了,2个小时连一个batch都没有跑完,我就没有训练完,就截个图看看:
在这里插入图片描述

9、代码文件挺多的,为了保持学习,还是需要逐行代码解释

1-pretrain.py

import os
import platform
import argparse
import time
import math
import warningsimport pandas as pd
import torch
import torch.distributed as dist
from torch import optim
from torch.nn.parallel import DistributedDataParallel
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.utils.data import DataLoader, DistributedSampler
from contextlib import nullcontextfrom transformers import AutoTokenizerfrom model.model import Transformer
from model.LMConfig import LMConfig
from model.dataset import PretrainDatasetwarnings.filterwarnings('ignore')def Logger(content):if not ddp or dist.get_rank() == 0:print(content)# 动态学习率变化
def get_lr(it, all):warmup_iters = args.warmup_iterslr_decay_iters = allmin_lr = args.learning_rate / 10if it < warmup_iters:return args.learning_rate * it / warmup_itersif it > lr_decay_iters:return min_lrdecay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)assert 0 <= decay_ratio <= 1coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))return min_lr + coeff * (args.learning_rate - min_lr)def train_epoch(epoch, wandb):start_time = time.time()for step, (X, Y, loss_mask) in enumerate(train_loader):X = X.to(args.device)Y = Y.to(args.device)loss_mask = loss_mask.to(args.device)lr = get_lr(epoch * iter_per_epoch + step, args.epochs * iter_per_epoch)for param_group in optimizer.param_groups:param_group['lr'] = lrwith ctx:out = model(X, Y)loss = out.last_loss / args.accumulation_stepsloss_mask = loss_mask.view(-1)loss = torch.sum(loss * loss_mask) / loss_mask.sum()scaler.scale(loss).backward()if (step + 1) % args.accumulation_steps == 0:scaler.unscale_(optimizer)torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)scaler.step(optimizer)scaler.update()optimizer.zero_grad(set_to_none=True)if step % args.log_interval == 0:spend_time = time.time() - start_timeLogger('Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.7f} epoch_Time:{}min:'.format(epoch,args.epochs,step,iter_per_epoch,loss.item() * args.accumulation_steps,optimizer.param_groups[-1]['lr'],spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))if (wandb is not None) and (not ddp or dist.get_rank() == 0):wandb.log({"loss": loss.item() * args.accumulation_steps,"lr": optimizer.param_groups[-1]['lr'],"epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60})if (step + 1) % args.save_interval == 0 and (not ddp or dist.get_rank() == 0):model.eval()moe_path = '_moe' if lm_config.use_moe else ''ckp = f'{args.save_dir}/pretrain_{lm_config.dim}{moe_path}.pth'if isinstance(model, torch.nn.parallel.DistributedDataParallel):state_dict = model.module.state_dict()else:state_dict = model.state_dict()torch.save(state_dict, ckp)model.train()def init_model():def count_parameters(model):return sum(p.numel() for p in model.parameters() if p.requires_grad)tokenizer = AutoTokenizer.from_pretrained('./model/minimind_tokenizer')model = Transformer(lm_config).to(args.device)# moe_path = '_moe' if lm_config.use_moe else ''Logger(f'LLM总参数量:{count_parameters(model) / 1e6:.3f} 百万')return model, tokenizerdef init_distributed_mode():if not ddp: returnglobal ddp_local_rank, DEVICEdist.init_process_group(backend="nccl")ddp_rank = int(os.environ["RANK"])ddp_local_rank = int(os.environ["LOCAL_RANK"])ddp_world_size = int(os.environ["WORLD_SIZE"])DEVICE = f"cuda:{ddp_local_rank}"torch.cuda.set_device(DEVICE)# torchrun --nproc_per_node 2 1-pretrain.py
if __name__ == "__main__":parser = argparse.ArgumentParser(description="MiniMind Pretraining")# out_dir: 输出目录,用于保存模型和日志。parser.add_argument("--out_dir", type=str, default="out", help="Output directory")# epochs: 训练的轮数。parser.add_argument("--epochs", type=int, default=20, help="Number of epochs")# batch_size: 每个批次的样本数量。parser.add_argument("--batch_size", type=int, default=64, help="Batch size")# learning_rate: 学习率。parser.add_argument("--learning_rate", type=float, default=2e-4, help="Learning rate")# device: 用于训练的设备,默认为 cuda:0 如果 GPU 可用,否则为 cpu。parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu", help="Device to use")# dtype: 数据类型(如 bfloat16)。parser.add_argument("--dtype", type=str, default="bfloat16", help="Data type")# use_wandb: 是否使用 Weights & Biases 进行实验跟踪。parser.add_argument("--use_wandb", action="store_true", help="Use Weights & Biases")# wandb_project: Weights & Biases 的项目名称。parser.add_argument("--wandb_project", type=str, default="MiniMind-Pretrain", help="Weights & Biases project name")# num_workers: 数据加载的工作线程数。parser.add_argument("--num_workers", type=int, default=1, help="Number of workers for data loading")# data_path: 训练数据的路径。parser.add_argument("--data_path", type=str, default="./dataset/pretrain_data.csv", help="Path to training data")# ddp: 是否启用分布式训练(使用 DistributedDataParallel)。parser.add_argument("--ddp", action="store_true", help="Use DistributedDataParallel")# accumulation_steps: 梯度累积的步数。parser.add_argument("--accumulation_steps", type=int, default=8, help="Gradient accumulation steps")# grad_clip: 梯度裁剪的阈值。parser.add_argument("--grad_clip", type=float, default=1.0, help="Gradient clipping threshold")# warmup_iters: 热身步骤数。parser.add_argument("--warmup_iters", type=int, default=0, help="Number of warmup iterations")# log_interval: 日志记录的间隔。parser.add_argument("--log_interval", type=int, default=100, help="Logging interval")# save_interval: 保存模型的间隔。parser.add_argument("--save_interval", type=int, default=1000, help="Model saving interval")# local_rank: 分布式训练时当前节点的 rank。parser.add_argument('--local_rank', type=int, default=-1, help='local rank for distributed training')args = parser.parse_args()lm_config = LMConfig()# 初始化配置,获取最大序列长度 max_seq_len。max_seq_len = lm_config.max_seq_lenargs.save_dir = os.path.join(args.out_dir)os.makedirs(args.save_dir, exist_ok=True)os.makedirs(args.out_dir, exist_ok=True)tokens_per_iter = args.batch_size * max_seq_len# 设置随机种子为 1337,确保实验可复现。torch.manual_seed(1337)# 设置 device_type 为 cuda 或 cpu,根据可用的硬件。device_type = "cuda" if "cuda" in args.device else "cpu"args.wandb_run_name = f"MiniMind-Pretrain-Epoch-{args.epochs}-BatchSize-{args.batch_size}-LearningRate-{args.learning_rate}"# 如果使用 GPU,启用混合精度训练(torch.cuda.amp.autocast())。ctx = nullcontext() if device_type == "cpu" else torch.cuda.amp.autocast()ddp = int(os.environ.get("RANK", -1)) != -1  # is this a ddp run?ddp_local_rank, DEVICE = 0, "cuda:0"# 如果启用 Weights & Biases(use_wandb),则初始化一个新的运行,用于跟踪训练过程。if ddp:init_distributed_mode()args.device = torch.device(DEVICE)if args.use_wandb and (not ddp or ddp_local_rank == 0):import wandbwandb.init(project=args.wandb_project, name=args.wandb_run_name)else:wandb = Nonemodel, tokenizer = init_model()df = pd.read_csv(args.data_path)df = df.sample(frac=1.0)train_ds = PretrainDataset(df, tokenizer, max_length=max_seq_len)train_sampler = DistributedSampler(train_ds) if ddp else Nonetrain_loader = DataLoader(train_ds,batch_size=args.batch_size,pin_memory=True,drop_last=False,shuffle=False,num_workers=args.num_workers,sampler=train_sampler)# 如果使用混合精度训练,初始化 GradScaler。scaler = torch.cuda.amp.GradScaler(enabled=(args.dtype in ['float16', 'bfloat16']))# 使用 Adam 优化器进行训练。optimizer = optim.Adam(model.parameters(), lr=args.learning_rate)# 如果条件满足,则尝试编译模型(这段代码被注释掉了,实际上不会执行)。if False and platform.system() != 'Windows' and float(torch.__version__.split('.')[0]) >= 2:Logger("compiling the model... (takes a ~minute)")unoptimized_model = modelmodel = torch.compile(model)# 如果启用了 DDP,模型会被包装在 DistributedDataParallel 中,以支持分布式训练。if ddp:model._ddp_params_and_buffers_to_ignore = {"pos_cis"}model = DistributedDataParallel(model, device_ids=[ddp_local_rank])# 设置每个 epoch 中的迭代次数,并开始训练过程。iter_per_epoch = len(train_loader)for epoch in range(args.epochs):train_epoch(epoch, wandb)

2-eval.py

import random
import timeimport numpy as np
import torch
import warnings
from transformers import AutoTokenizer, AutoModelForCausalLM
from model.model import Transformer
from model.LMConfig import LMConfigwarnings.filterwarnings('ignore')def count_parameters(model):return sum(p.numel() for p in model.parameters() if p.requires_grad)def init_model(lm_config):tokenizer = AutoTokenizer.from_pretrained('./model/minimind_tokenizer')model_from = 1  # 1从权重,2用transformersif model_from == 1:# Load Model from Local Checkpoint# moe_path is conditionally added to the checkpoint filename if lm_config.use_moe is True. This suggests that the model might have an optional Mixture-of-Experts (MoE) configuratiomoe_path = '_moe' if lm_config.use_moe else ''ckp = f'./out/full_sft_{lm_config.dim}{moe_path}.pth'model = Transformer(lm_config)state_dict = torch.load(ckp, map_location=device)# 处理不需要的前缀unwanted_prefix = '_orig_mod.'# 包含了所有的权重,k是每一层权重的名字, v 是权重矩阵# 这段代码的目的是删除从某个模型加载时可能附加的多余前缀(如 _orig_mod.),确保参数名符合当前模型的要求,避免加载时出错。# {                                                                 {#     '_orig_mod.layer1.weight': torch.Tensor(...),                     'layer1.weight': torch.Tensor(...),#     '_orig_mod.layer1.bias': torch.Tensor(...),         =>            'layer1.bias': torch.Tensor(...),#     'layer2.weight': torch.Tensor(...),                               'layer2.weight': torch.Tensor(...),# }                                                                 }for k, v in list(state_dict.items()):if k.startswith(unwanted_prefix):state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)# 下面的代码是去掉掩码层# {                                                     #     'layer2.bias': torch.Tensor(...),             {        #     'mask_embedding': torch.Tensor(...),     =>       'layer2.bias': torch.Tensor(...),       # }                                                 }    for k, v in list(state_dict.items()):if 'mask' in k:del state_dict[k]# 加载到模型中model.load_state_dict(state_dict, strict=False)else:# Load Model from Hugging Face Hubmodel = AutoModelForCausalLM.from_pretrained('./minimind-v1-small', trust_remote_code=True)model = model.to(device)print(f'模型参数: {count_parameters(model) / 1e6} 百万 = {count_parameters(model) / 1e9} B (Billion)')return model, tokenizerdef setup_seed(seed):random.seed(seed)  # 设置 Python 的随机种子np.random.seed(seed)  # 设置 NumPy 的随机种子torch.manual_seed(seed)  # 设置 PyTorch 的随机种子torch.cuda.manual_seed(seed)  # 为当前 GPU 设置随机种子(如果有)torch.cuda.manual_seed_all(seed)  # 为所有 GPU 设置随机种子(如果有)torch.backends.cudnn.deterministic = True  # 确保每次返回的卷积算法是确定的torch.backends.cudnn.benchmark = False  # 关闭 cuDNN 的自动调优,避免不确定性if __name__ == "__main__":# -----------------------------------------------------------------------------out_dir = 'out'start = ""temperature = 0.7# top_k = 16:控制生成文本时的候选词汇数目(Top-K Sampling)。k=16 表示每次生成时,会从16个最可能的单词中选择。top_k = 16# device = 'cpu'device = 'cuda:0' if torch.cuda.is_available() else 'cpu'dtype = 'bfloat16'max_seq_len = 1 * 1024lm_config = LMConfig()lm_config.max_seq_len = max_seq_len# 控制是否在对话中加入历史聊天记录。如果为False,则每次都从一个空的对话开始。contain_history_chat = False# -----------------------------------------------------------------------------model, tokenizer = init_model(lm_config)# 设置模型为评估模式(eval)。这意味着模型将不进行训练,例如禁用 Dropout 层等。model = model.eval()# 推送到huggingface# model.push_to_hub("minimind")# tokenizer.push_to_hub("minimind")# answer_way = int(input('输入0自动测试,输入1问题测试:'))answer_way = 0stream = Trueprompt_datas = ['你叫什么名字','你是谁','中国有哪些比较好的大学?',]messages_origin = []messages = messages_origini = 0while i < len(prompt_datas):# 为每次生成设置一个随机种子,确保每次生成的回答都不同。random_seed = random.randint(0, 2 ** 32 - 1)# 调用 setup_seed 函数设置随机种子,确保训练和推理过程中产生的随机数可重复。setup_seed(random_seed)if not contain_history_chat:messages = messages_origin.copy()if answer_way == 1:prompt = input('[Q]: ')else:prompt = prompt_datas[i]print(f'[Q]: {prompt}')i += 1prompt = '请问,' + promptmessages.append({"role": "user", "content": prompt})# [-(max_seq_len - 1):] 这是为了确保输入长度不会超过模型的最大序列长度 max_seq_len,而且为生成时留出至少 1 个 token 的空间 。new_prompt = tokenizer.apply_chat_template(messages,tokenize=False,add_generation_prompt=True)[-(max_seq_len - 1):]print("new_prompt", new_prompt)# new_prompt = <s>user请问,你叫什么名字</s><s>assistant# 将 new_prompt 转换成 token id,生成适合模型输入的张量 x# new_prompt = "请问,你叫什么名字?"# input_ids = [101, 7592, 8024, 8110, 9361, 10707, 102]x = tokenizer(new_prompt).data['input_ids']print("x1", x) # [1, 320, 275, 201, 4600, 270, 608, 5515, 1541, 1167, 1129, 2, 201, 1, 1078, 538, 501, 201]# 使用 torch.no_grad() 禁用梯度计算,这样可以加速推理过程并节省内存。x = (torch.tensor(x, dtype=torch.long, device=device)[None, ...]) # 等价于 x.unsqueeze(0)print("x2", x) # [[1,  320,  275,  201, 4600,  270,  608, 5515, 1541, 1167, 1129, 2, 201, 1, 1078,  538,  501,  201]]answer = new_promptprint("answer ========================", answer)with torch.no_grad():# model.generate() 使用模型生成回答,参数包括输入的 x,生成的最大 token 数量 max_new_tokens,温度 temperature , Top-K Sampling 的 top_k,以及是否使用流式生成 stream 。# y 是从模型中生成的 token,tokenizer.decode() 用于将这些 token 转换为可读的文本。res_y = model.generate(x, tokenizer.eos_token_id, max_new_tokens=max_seq_len, temperature=temperature, top_k=top_k, stream=stream)print("res_y", res_y)try:y = next(res_y)except StopIteration:print("No answer")continuehistory_idx = 0while y != None:answer = tokenizer.decode(y[0].tolist())print("Next word:", answer)# 通过检查生成的文本,如果最后一个字符是 '�'(通常是乱码的标志), 则继续获取下一个输出直到得到有效的回答 。if answer and answer[-1] == '�':try:y = next(res_y)print("="+y+"=")except:breakcontinueif not len(answer):try:y = next(res_y)print("="+y+"=")except:breakcontinuetry:y = next(res_y)# print("Next token:", y) # tensor([[4064, 1589, 1886, 2933,  270]], device='cuda:0')except:breakhistory_idx = len(answer)if not stream:break# 如果设置了 contain_history_chat = True,则会将助手的回答加入 messages 中,作为下一轮对话的上下文。if contain_history_chat:assistant_answer = answer.replace(new_prompt, "")messages.append({"role": "assistant", "content": assistant_answer})

3-full_sft.py

import os
import platform
import argparse
import time
import math
import warningsimport pandas as pd
import torch
import torch.nn.functional as F
import torch.distributed as dist
from contextlib import nullcontextfrom torch import optim
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data import DataLoader, DistributedSampler
from transformers import AutoTokenizer, AutoModelForCausalLM
from model.model import Transformer
from model.LMConfig import LMConfig
from model.dataset import SFTDatasetwarnings.filterwarnings('ignore')def Logger(content):if not ddp or dist.get_rank() == 0:print(content)def get_lr(it, all):warmup_iters = args.warmup_iterslr_decay_iters = allmin_lr = args.learning_rate / 10if it < warmup_iters:return args.learning_rate * it / warmup_itersif it > lr_decay_iters:return min_lrdecay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)assert 0 <= decay_ratio <= 1coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))return min_lr + coeff * (args.learning_rate - min_lr)def train_epoch(epoch, wandb):start_time = time.time()for step, (X, Y, loss_mask) in enumerate(train_loader):X = X.to(args.device)Y = Y.to(args.device)loss_mask = loss_mask.to(args.device)lr = get_lr(epoch * iter_per_epoch + step, args.epochs * iter_per_epoch)for param_group in optimizer.param_groups:param_group['lr'] = lrwith ctx:logits = model(X, Y).logitsloss = F.cross_entropy(logits.view(-1, logits.size(-1)), Y.view(-1), ignore_index=0, reduction='none')loss_mask = loss_mask.view(-1)loss = torch.sum(loss * loss_mask) / loss_mask.sum()scaler.scale(loss).backward()if (step + 1) % args.accumulation_steps == 0:scaler.unscale_(optimizer)torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)scaler.step(optimizer)scaler.update()optimizer.zero_grad(set_to_none=True)if step % args.log_interval == 0:spend_time = time.time() - start_timeLogger('Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.7f} epoch_Time:{}min:'.format(epoch,args.epochs,step,iter_per_epoch,loss.item(),optimizer.param_groups[-1]['lr'],spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))if (wandb is not None) and (not ddp or dist.get_rank() == 0):wandb.log({"loss": loss,"lr": optimizer.param_groups[-1]['lr'],"epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60})if (step + 1) % args.save_interval == 0 and (not ddp or dist.get_rank() == 0):model.eval()moe_path = '_moe' if lm_config.use_moe else ''ckp = f'{args.save_dir}/full_sft_{lm_config.dim}{moe_path}.pth'if isinstance(model, torch.nn.parallel.DistributedDataParallel):state_dict = model.module.state_dict()else:state_dict = model.state_dict()torch.save(state_dict, ckp)model.train()def init_model():tokenizer = AutoTokenizer.from_pretrained('./model/minimind_tokenizer')model_from = 1  # 1从权重,2用transformersdef count_parameters(model):return sum(p.numel() for p in model.parameters() if p.requires_grad)if model_from == 1:model = Transformer(lm_config)moe_path = '_moe' if lm_config.use_moe else ''ckp = f'./out/pretrain_{lm_config.dim}{moe_path}.pth'state_dict = torch.load(ckp, map_location=args.device)unwanted_prefix = '_orig_mod.'for k, v in list(state_dict.items()):if k.startswith(unwanted_prefix):state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)model.load_state_dict(state_dict, strict=False)else:model = AutoModelForCausalLM.from_pretrained('./minimind-v1-small', trust_remote_code=True)Logger(f'LLM总参数量:{count_parameters(model) / 1e6:.3f} 百万')model = model.to(args.device)return model, tokenizerdef init_distributed_mode():if not ddp: returnglobal ddp_local_rank, DEVICEdist.init_process_group(backend="nccl")ddp_rank = int(os.environ["RANK"])ddp_local_rank = int(os.environ["LOCAL_RANK"])ddp_world_size = int(os.environ["WORLD_SIZE"])DEVICE = f"cuda:{ddp_local_rank}"torch.cuda.set_device(DEVICE)if __name__ == "__main__":parser = argparse.ArgumentParser(description="MiniMind Full SFT")parser.add_argument("--out_dir", type=str, default="out", help="Output directory")parser.add_argument("--epochs", type=int, default=19, help="Number of epochs")parser.add_argument("--batch_size", type=int, default=32, help="Batch size")parser.add_argument("--learning_rate", type=float, default=1e-4, help="Learning rate")parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu", help="Device to use")parser.add_argument("--dtype", type=str, default="bfloat16", help="Data type")parser.add_argument("--use_wandb", action="store_true", help="Use Weights & Biases")parser.add_argument("--wandb_project", type=str, default="MiniMind-Full-SFT", help="Weights & Biases project name")parser.add_argument("--num_workers", type=int, default=1, help="Number of workers for data loading")parser.add_argument("--ddp", action="store_true", help="Use DistributedDataParallel")parser.add_argument("--accumulation_steps", type=int, default=1, help="Gradient accumulation steps")parser.add_argument("--grad_clip", type=float, default=1.0, help="Gradient clipping threshold")parser.add_argument("--warmup_iters", type=int, default=0, help="Number of warmup iterations")parser.add_argument("--log_interval", type=int, default=100, help="Logging interval")parser.add_argument("--save_interval", type=int, default=1000, help="Model saving interval")parser.add_argument('--local_rank', type=int, default=-1, help='local rank for distributed training')args = parser.parse_args()lm_config = LMConfig()max_seq_len = lm_config.max_seq_lenargs.save_dir = os.path.join(args.out_dir)os.makedirs(args.save_dir, exist_ok=True)os.makedirs(args.out_dir, exist_ok=True)tokens_per_iter = args.batch_size * max_seq_lentorch.manual_seed(1337)device_type = "cuda" if "cuda" in args.device else "cpu"args.wandb_run_name = f"MiniMind-Full-SFT-Epoch-{args.epochs}-BatchSize-{args.batch_size}-LearningRate-{args.learning_rate}"ctx = nullcontext() if device_type == "cpu" else torch.cuda.amp.autocast()ddp = int(os.environ.get("RANK", -1)) != -1  # is this a ddp run?ddp_local_rank, DEVICE = 0, "cuda:0"if ddp:init_distributed_mode()args.device = torch.device(DEVICE)if args.use_wandb and (not ddp or ddp_local_rank == 0):import wandbwandb.init(project=args.wandb_project, name=args.wandb_run_name)else:wandb = Nonemodel, tokenizer = init_model()df = pd.read_csv('./dataset/sft_data_single.csv')df = df.sample(frac=1.0)train_ds = SFTDataset(df, tokenizer, max_length=max_seq_len)train_sampler = DistributedSampler(train_ds) if ddp else Nonetrain_loader = DataLoader(train_ds,batch_size=args.batch_size,pin_memory=True,drop_last=False,shuffle=False,num_workers=args.num_workers,sampler=train_sampler)scaler = torch.cuda.amp.GradScaler(enabled=(args.dtype in ['float16', 'bfloat16']))optimizer = optim.Adam(model.parameters(), lr=args.learning_rate)if False and not lm_config.use_moe and platform.system() != 'Windows' and float(torch.__version__.split('.')[0]) >= 2:Logger("compiling the model... (takes a ~minute)")unoptimized_model = modelmodel = torch.compile(model)if ddp:model._ddp_params_and_buffers_to_ignore = {"pos_cis"}model = DistributedDataParallel(model, device_ids=[ddp_local_rank])iter_per_epoch = len(train_loader)for epoch in range(args.epochs):train_epoch(epoch, wandb)

4-lora_sft.py

import os
import platform
import argparse
import time
import math
import warnings
import torch
import pandas as pd
import torch.nn.functional as F
from contextlib import nullcontextfrom torch import optim
from transformers import AutoTokenizer
from transformers import AutoModelForCausalLM
from peft import get_peft_model, LoraConfig, TaskType
from torch.utils.data import DataLoader
from model.LMConfig import LMConfig
from model.dataset import SFTDataset
from model.model import Transformerwarnings.filterwarnings('ignore')def Logger(content):print(content)def get_lr(it, all):warmup_iters = args.warmup_iterslr_decay_iters = allmin_lr = args.learning_rate / 10if it < warmup_iters:return args.learning_rate * it / warmup_itersif it > lr_decay_iters:return min_lrdecay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)assert 0 <= decay_ratio <= 1coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))return min_lr + coeff * (args.learning_rate - min_lr)def train_epoch(epoch, wandb):start_time = time.time()for step, (X, Y, loss_mask) in enumerate(train_loader):X = X.to(args.device)Y = Y.to(args.device)loss_mask = loss_mask.to(args.device)lr = get_lr(epoch * iter_per_epoch + step, args.epochs * iter_per_epoch)for param_group in optimizer.param_groups:param_group['lr'] = lrwith ctx:logits = model(X, Y).logitsloss = F.cross_entropy(logits.view(-1, logits.size(-1)), Y.view(-1), ignore_index=0, reduction='none')loss_mask = loss_mask.view(-1)loss = torch.sum(loss * loss_mask) / loss_mask.sum()loss = loss / args.accumulation_stepsscaler.scale(loss).backward()if (step + 1) % args.accumulation_steps == 0:scaler.unscale_(optimizer)torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)scaler.step(optimizer)scaler.update()optimizer.zero_grad(set_to_none=True)if step % args.log_interval == 0:spend_time = time.time() - start_timeLogger('Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.7f} epoch_Time:{}min:'.format(epoch,args.epochs,step,iter_per_epoch,loss.item() * args.accumulation_steps,optimizer.param_groups[-1]['lr'],spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))if wandb is not None:wandb.log({"loss": loss.item() * args.accumulation_steps,"lr": optimizer.param_groups[-1]['lr'],"epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60})if (step + 1) % args.save_interval == 0:model.save_pretrained(args.save_dir)def find_linear_with_keys(model, keys=["wq", "wk"]):cls = torch.nn.Linearlinear_names = []for name, module in model.named_modules():if isinstance(module, cls):for key in keys:if key in name:linear_names.append(name)breakreturn linear_namesdef init_model():model_name_or_path = "./minimind-v1-small"tokenizer_name_or_path = "./minimind-v1-small"tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path, trust_remote_code=True, use_fast=False)model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True).to(args.device)target_modules = find_linear_with_keys(model)peft_config = LoraConfig(r=8,target_modules=target_modules)model = get_peft_model(model, peft_config)model.print_trainable_parameters()model = model.to(args.device)return model, tokenizerif __name__ == "__main__":parser = argparse.ArgumentParser(description="MiniMind LoRA Fine-tuning")parser.add_argument("--out_dir", type=str, default="out", help="Output directory")parser.add_argument("--epochs", type=int, default=20, help="Number of epochs")parser.add_argument("--batch_size", type=int, default=32, help="Batch size")parser.add_argument("--learning_rate", type=float, default=1e-4, help="Learning rate")parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu",help="Device to use")parser.add_argument("--dtype", type=str, default="bfloat16", help="Data type")parser.add_argument("--use_wandb", action="store_true", help="Use Weights & Biases")parser.add_argument("--wandb_project", type=str, default="MiniMind-LoRA", help="Weights & Biases project name")parser.add_argument("--num_workers", type=int, default=1, help="Number of workers for data loading")parser.add_argument("--accumulation_steps", type=int, default=1, help="Gradient accumulation steps")parser.add_argument("--grad_clip", type=float, default=1.0, help="Gradient clipping threshold")parser.add_argument("--warmup_iters", type=int, default=1000, help="Number of warmup iterations")parser.add_argument("--log_interval", type=int, default=100, help="Logging interval")parser.add_argument("--save_interval", type=int, default=1000, help="Model saving interval")args = parser.parse_args()lm_config = LMConfig()max_seq_len = lm_config.max_seq_lenargs.save_dir = os.path.join(args.out_dir)os.makedirs(args.save_dir, exist_ok=True)os.makedirs(args.out_dir, exist_ok=True)tokens_per_iter = args.batch_size * max_seq_lentorch.manual_seed(1337)device_type = "cuda" if "cuda" in args.device else "cpu"args.wandb_run_name = f"MiniMind-LoRA-Epoch-{args.epochs}-BatchSize-{args.batch_size}-LearningRate-{args.learning_rate}"ctx = nullcontext() if device_type == "cpu" else torch.cuda.amp.autocast()if args.use_wandb:import wandbwandb.init(project=args.wandb_project, name=args.wandb_run_name)else:wandb = Nonemodel, tokenizer = init_model()df = pd.read_csv('./dataset/sft_data_single.csv')df = df.sample(frac=1.0)train_ds = SFTDataset(df, tokenizer, max_length=max_seq_len)train_loader = DataLoader(train_ds,batch_size=args.batch_size,pin_memory=True,drop_last=False,shuffle=False,num_workers=args.num_workers,)scaler = torch.cuda.amp.GradScaler(enabled=(args.dtype in ['float16', 'bfloat16']))optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()),lr=args.learning_rate)if False and platform.system() != 'Windows' and float(torch.__version__.split('.')[0]) >= 2:Logger("compiling the model... (takes a ~minute)")unoptimized_model = modelmodel = torch.compile(model)iter_per_epoch = len(train_loader)for epoch in range(args.epochs):train_epoch(epoch, wandb)

data_process.py

import csv
import itertools
import re
import json
import jsonlines
import psutil
import ujson
import numpy as np
import pandas as pd
from transformers import AutoTokenizer
from datasets import load_datasetbos_token = "<s>"
eos_token = "</s>"def pretrain_process(chunk_size=50000):chunk_idx = 0with jsonlines.open('./dataset/mobvoi_seq_monkey_general_open_corpus.jsonl') as reader:with open('./dataset/pretrain_data.csv', 'w', newline='', encoding='utf-8') as csvfile:writer = csv.writer(csvfile)writer.writerow(['text'])while True:chunk = list(itertools.islice(reader, chunk_size))if not chunk:breakfor idx, obj in enumerate(chunk):try:content = obj.get('text', '')if len(content) > 512:continuewriter.writerow([content])except UnicodeDecodeError as e:print(f"Skipping invalid line {chunk_idx * chunk_size + idx + 1}: {e}")continuechunk_idx += 1print('chunk:', ((chunk_idx - 1) * chunk_size, chunk_idx * chunk_size), 'process end')def sft_process(contain_history=False):file_name = 'sft_data.csv'if not contain_history:file_name = 'sft_data_single.csv'def chinese_ratio(text):# 匹配所有中文字符chinese_chars = re.findall(r'[\u4e00-\u9fff]', text)# 中文字符数量占比return len(chinese_chars) / len(text) if text else 0def process_and_write_data(data):q_lst, a_lst, history_lst = [], [], []for per in data:history, q, a = per['history'], per['q'], per['a']if (contain_history and not history) or not q or not a:continueif len(q) < 10 or len(a) < 5:continueif len(q) > 512 or len(a) > 512:continue# 判断q和a中中文字符占比是否超过70%if not (chinese_ratio(q) > 0.5 and chinese_ratio(a) > 0.5):continueq_lst.append(q)a_lst.append(a)if contain_history:history_lst.append(history)else:history_lst.append([])# 创建DataFrame并追加到CSV文件df = pd.DataFrame({'history': history_lst, 'q': q_lst, 'a': a_lst})# # 1、默认# df.to_csv(f'./dataset/{file_name}', mode='a', header=False, index=False, lineterminator='\r\n', encoding='utf-8')# 2、若遇到数据 `_csv.Error: need to escape, but no escapechar set` 问题,可加 escapechar='\\' 参数:df.to_csv(f'./dataset/{file_name}', mode='a', header=False, index=False, lineterminator='\r\n', escapechar='\\',encoding='utf-8')chunk_size = 1000  # 每次处理的记录数data = []with open(f'./dataset/{file_name}', 'w', encoding='utf-8') as f:f.write('history,q,a\n')sft_datasets = ['./dataset/sft_data_zh.jsonl']if not contain_history:sft_datasets = ['./dataset/sft_data_zh.jsonl']chunk_num = 0for path in sft_datasets:with jsonlines.open(path) as reader:for idx, obj in enumerate(reader):try:data.append({'history': obj.get('history', ''),'q': obj.get('input', '') + obj.get('q', ''),'a': obj.get('output', '') + obj.get('a', '')})if len(data) >= chunk_size:chunk_num += 1process_and_write_data(data)data = []if chunk_num % 100 == 0:print(f'chunk:{chunk_num} process end')except jsonlines.InvalidLineError as e:print(f"Skipping invalid JSON line {idx + 1}: {e}")continueif data:process_and_write_data(data)data = []def rl_process():################# Dataset################dataset_paths = ['./dataset/dpo/dpo_zh_demo.json','./dataset/dpo/dpo_train_data.json','./dataset/dpo/huozi_rlhf_data.json',]train_dataset = load_dataset('json', data_files=dataset_paths)merged_data = []for split in train_dataset.keys():merged_data.extend(train_dataset[split])with open('./dataset/dpo/train_data.json', 'w', encoding='utf-8') as f:json.dump(merged_data, f, ensure_ascii=False, indent=4)if __name__ == "__main__":tokenizer = AutoTokenizer.from_pretrained('./model/minimind_tokenizer', use_fast=False)print('tokenizer词表大小:', len(tokenizer))print('tokenizer词表大小:', tokenizer)################# 1: pretrain# 2: sft# 3: RL################process_type = 2if process_type == 1:pretrain_process()if process_type == 2:sft_process(contain_history=False)if process_type == 3:rl_process()

学习参考资料

别人的一些学习心得:
https://github.com/jingyaogong/minimind/issues/26

B站大佬解释:
https://www.bilibili.com/video/BV1Sh1vYBEzY?spm_id_from=333.788.player.player_end_recommend_autoplay&vd_source=73f0f43dc639135d4ea9acffa3ad6ae0

推荐在线显卡租赁市场:
在这里插入图片描述

http://www.hotlads.com/news/5134.html

相关文章:

  • 咸阳做网站电话重庆网站建设与制作
  • 要搭建网站网站制作的费用
  • 科技公司网站设计公司百度指数官方网站
  • 北京电商购物网站开发站长工具seo词语排名
  • 会用框架做网站能找到工作吗全网网站快速排名推广软件
  • 网站怎么做cp备案号枸橼酸西地那非片的作用及功效
  • 网站建设的目的和作用企业网站的作用和意义
  • 注册网站要百度实名认证安不安全百度入口网页版
  • 初学者学做网站怎么学网页界面设计
  • 如何 做网站跳转大连百度关键词排名
  • 怎么样开一个公司网站潍坊网站建设seo
  • 做网站发布网网站的开发流程
  • 物流网站建设图片百度推广怎么提高关键词排名
  • 开发网站报价方案seo推广软件品牌
  • 做网站用html还是python好惠州seo排名公司
  • 上线了做网站怎么样网站点击排名优化
  • 广东网络建设公司优化的定义
  • 做钢材生意选什么网站产品营销软文
  • 1g内存做网站seo关键词查询
  • 网站alexa排名网站推广方案范例
  • 常州建设局职称网站免费发布活动的平台
  • 动漫制作专业的高职实训室关键词优化外包
  • 石家庄移动端网站建设优化关键词怎么做
  • 高新区做网站的公司2023年又封城了
  • 企业网站完整版百度点击软件
  • 做网站国外网站网站流量统计系统
  • 深圳哪个网站发布做网站百度网页网址
  • 隐藏网站源代码培训心得体会怎么写
  • 我的世界外国做图网站今日中国新闻
  • 企业做网站需要什么360提交网站收录入口