当前位置: 首页 > news >正文

本地做那种网站好一些有没有专门做营销的公司

本地做那种网站好一些,有没有专门做营销的公司,网站优化要怎么做,单页关键字优化一、说明 LDA 是一种监督降维和分类技术。其主要目的是查找最能分隔数据集中两个或多个类的特征的线性组合。LDA 的主要目标是找到一个较低维度的子空间,该子空间可以最大限度地区分不同类别,同时保留与歧视相关的信息。 LDA 是受监督的,这意…

一、说明

        LDA 是一种监督降维和分类技术。其主要目的是查找最能分隔数据集中两个或多个类的特征的线性组合。LDA 的主要目标是找到一个较低维度的子空间,该子空间可以最大限度地区分不同类别,同时保留与歧视相关的信息。

        LDA 是受监督的,这意味着它需要了解类标签或类别。它试图在数据空间中找到最能区分类的方向(特征的线性组合)。LDA 使类间方差与类内方差的比率最大化。它通过查找要素的线性组合来实现,这些要素可以最大限度地提高类之间的可分离性。

        然而,一个问题是,LDA与PCA有什么区别。LDA 面向分类和最大化类分离,而 PCA 则更通用,侧重于捕获数据方差

        让我们看看计算数据集的 LDA 所涉及的步骤

二、步骤1:数据收集

        让我们从一个数据集开始,其中包含来自两个类(A 类和 B 类)以及两个特征(特征 1 和特征 2)的样本。

三、步骤 2:计算类均值

计算两个要素的每个类(A 类和 B 类)的平均向量。

A 类的平均向量:

Mean(Feature 1) = (2.0 + 1.5 + 3.0 + 2.5) / 4 = 2.5
Mean(Feature 2) = (3.5 + 2.5 + 4.0 + 3.8) / 4 = 3.45

B 类的平均向量:

Mean(Feature 1) = (3.5 + 4.0 + 5.0 + 4.5) / 4 = 4.25
Mean(Feature 2) = (2.0 + 2.7 + 3.0 + 2.5) / 4 = 2.55

四、步骤 3:计算类内散点矩阵 (SW)

SW 表示数据集的类内散点矩阵。它衡量每个类内数据的分布

要计算数据集的类内散点矩阵 (SW),您需要分别计算每个类的协方差矩阵,然后将它们相加。让我们一步一步地计算 A 类的 SW:

1.让我们将 A 类的平均向量表示为 ,我们已经计算过了:μ_A

μ_A = [Mean(Feature 1), Mean(Feature 2)] = [2.25, 3.45]

2.计算A类的协方差矩阵

A 类的协方差矩阵计算如下:

Covariance Matrix for Class A (S_A) = Σ [(x - Mean Vector for Class A) * (x - Mean Vector for Class A)^T]
Sample 1 (Class A):
Feature 1: 2.0
Feature 2: 3.5Calculate differences:
Diff1 = 2.0 - 2.25 = -0.25
Diff2 = 3.5 - 3.45 = 0.05Cov(Feature 1, Feature 1) = (Diff1 * Diff1) / (4 - 1) = (-0.25 * -0.25) / 3 = 0.0417 
Cov(Feature 1, Feature 2) = (Diff1 * Diff2) / (4 - 1) = (-0.25 * 0.05) / 3 = -0.0042 
Sample 2 (Class A):
Feature 1: 1.5
Feature 2: 2.5Calculate differences:
Diff1 = 1.5 - 2.25 = -0.75
Diff2 = 2.5 - 3.45 = -0.95Covariance Matrix elements for Sample 2:
Cov(Feature 1, Feature 1) = (Diff1 * Diff1) / (4 - 1) = (-0.75 * -0.75) / 3 = 0.1875
Cov(Feature 1, Feature 2) = (Diff1 * Diff2) / (4 - 1) = (-0.75 * -0.95) / 3 = 0.2375
Sample 3 (Class A):Feature 1: 3.0
Feature 2: 4.0
Calculate differences:Diff1 = 3.0 - 2.25 = 0.75
Diff2 = 4.0 - 3.45 = 0.55
Covariance Matrix elements for Sample 3:Cov(Feature 1, Feature 1) = (Diff1 * Diff1) / (4 - 1) = (0.75 * 0.75) / 3 = 0.1875
Cov(Feature 1, Feature 2) = (Diff1 * Diff2) / (4 - 1) = (0.75 * 0.55) / 3 = 0.1375
Sample 4 (Class A):Feature 1: 2.5
Feature 2: 3.8
Calculate differences:Diff1 = 2.5 - 2.25 = 0.25
Diff2 = 3.8 - 3.45 = 0.35Covariance Matrix elements for Sample 4:
Cov(Feature 1, Feature 1) = (Diff1 * Diff1) / (4 - 1) = (0.25 * 0.25) / 3 = 0.04
Cov(Feature 1, Feature 2) = (Diff1 * Diff2) / (4 - 1) = (0.25 * 0.35) / 3 = 0.029

A 类的协方差矩阵:

| Cov(Feature 1, Feature 1)    Cov(Feature 1, Feature 2) |
| Cov(Feature 2, Feature 1)    Cov(Feature 2, Feature 2) |
Covariance Matrix for Sample 1 (S1_A):
[[0.25, -0.025],[-0.025, 0.0025]]Covariance Matrix for Sample 2 (S2_A):
[[1.0, 0.95],[0.95, 0.9025]]Covariance Matrix for Sample 3 (S3_A):
[[0.25, 0.275],[0.275, 0.3025]]Covariance Matrix for Sample 4 (S4_A):
[[0.0, 0.0],[0.0, 0.1225]]
S_A = S1_A + S2_A + S3_A + S4_A

代入计算值:

S_A =| 0.0417   -0.0042 || 0.2375    0.0417  |

同样,我们可以计算 B 类的协方差矩阵

Sample 5 (Class B):
Cov(Feature 1, Feature 1) = (Diff1 * Diff1) = (-0.625 * -0.625) = 0.390625
Cov(Feature 1, Feature 2) = (Diff1 * Diff2) = (-0.625 * -0.55) = 0.34375
Cov(Feature 2, Feature 1) = (Diff2 * Diff1) = (-0.55 * -0.625) = 0.34375
Cov(Feature 2, Feature 2) = (Diff2 * Diff2) = (-0.55 * -0.55) = 0.3025
Sample 6 (Class B):
Cov(Feature 1, Feature 1) = (Diff1 * Diff1) = (-0.125 * -0.125) = 0.015625
Cov(Feature 1, Feature 2) = (Diff1 * Diff2) = (-0.125 * 0.15) = -0.01875
Cov(Feature 2, Feature 1) = (Diff2 * Diff1) = (0.15 * -0.125) = -0.01875
Cov(Feature 2, Feature 2) = (Diff2 * Diff2) = (0.15 * 0.15) = 0.0225
Sample 7 (Class B):
Cov(Feature 1, Feature 1) = (Diff1 * Diff1) = (0.875 * 0.875) = 0.765625
Cov(Feature 1, Feature 2) = (Diff1 * Diff2) = (0.875 * 0.45) = 0.39375
Cov(Feature 2, Feature 1) = (Diff2 * Diff1) = (0.45 * 0.875) = 0.39375
Cov(Feature 2, Feature 2) = (Diff2 * Diff2) = (0.45 * 0.45) = 0.2025
Sample 8 (Class B):
Cov(Feature 1, Feature 1) = (Diff1 * Diff1) = (0.375 * 0.375) = 0.140625
Cov(Feature 1, Feature 2) = (Diff1 * Diff2) = (0.375 * -0.05) = -0.01875
Cov(Feature 2, Feature 1) = (Diff2 * Diff1) = (-0.05 * 0.375) = -0.01875
Cov(Feature 2, Feature 2) = (Diff2 * Diff2) = (-0.05 * -0.05) = 0.0025
S_B = S5_B + S6_B + S7_B + S8_B
S_B = [[1.3125, 0.7],[0.7, 0.53]]

计算类内散点矩阵 (SW)。将两个类的协方差矩阵相加即可得到 SW:

Within-Class Scatter Matrix (SW)
=S_A+S_B=S_W 
= [0.0833 + 0.765625, -0.000833 + 0.39375][-0.000833 + 0.39375, 0.0025 + 0.2025]S_W = [0.848925, 0.393917][0.392917, 0.205]

五、步骤 4:计算特征值和特征向量

在计算上,可以找到:

# Compute eigenvalues and eigenvectors
eigenvalues, eigenvectors = np.linalg.eig(S_W)

从数学上讲,这可以找到:

  1. 计算S_W的倒数:

计算类内散点矩阵的逆数,表示为 S_W⁻¹。如果S_W不可逆,则可以使用伪逆。

S_W^(-1) = | 10.8103  -20.7762 || -20.7762  44.7628  |

2.S_W^(-1)和S_B的乘积

S_W^(-1) * S_B = | 13.344  -6.953 || -4.543  11.953 |

3.To 找到特征值 (λ),您需要求解特征方程,该方程由下式给出:

|S_W^(-1) * S_B - λ * I| = 0

I是单位矩阵

| 13.344 - λ  -6.953 |
| -4.543   11.953 - λ |

        可以通过将每个特征值代入方程并求解相应的特征向量来找到特征向量。S_W^(-1) * S_B * v = λ * vv

六、步骤 5:对特征值进行排序

        获得特征值后,按降序对它们进行排序以确定其重要性。您可以按如下方式在数学上表示这一点:

        设特征值表示为 λ_1、λ_2、...、λ_p (其中 p 是要素或维度的数量)。

        按降序对特征值进行排序:


λ_1 >= λ_2 >= ... >= λ_p

七、第 6 步:选择组件

        现在,您可以选择顶部特征值,其中是所需的降维水平。让我们将其表示为选择最大的特征值:kkk

λ_1, λ_2, ..., λ_k

        这些特征值表示数据中最重要的判别方向。k

八、第 7 步:项目数据

        选择特征值后,可以使用相应的特征向量将原始数据投影到新的低维空间上。此步骤降低了数据的维度,同时保留了最相关的信息。kk

        使用线性判别分析 (LDA) 中选定的特征向量将数据投影到低维空间上

http://www.hotlads.com/news/1700.html

相关文章:

  • 建设政府网站的成本宁波正规seo推广公司
  • 企业网站建设能解决什么问题精准客户运营推广
  • jsp做的求职招聘网站百度云石家庄百度seo排名
  • 东戴河网站建设seo培训教程
  • 网站选项卡如何做自适应石家庄高级seo经理
  • 做妓的网站网站关键字优化价格
  • 建e网登录seo主要做什么
  • 相亲网站认识的可以做朋友沧州网站运营公司
  • 合肥市做网站的公司有哪些优化网站排名费用
  • 网站建设二次开发网站关键词优化排名软件系统
  • 网站建设项目方案ppt上google必须翻墙吗
  • 怎么增加网站收录seo入门到精通
  • 网站开发与设计这么样百度指数查询手机版app
  • 想花钱做网站怎么做关键词语有哪些
  • 做网站的开源代码百度一下首页网址
  • 设计教程网站市场监督管理局职责
  • wordpress怎么删除预建网站百度搜索引擎广告
  • 邢台网站建设电话宁波seo关键词优化
  • 怎么根据已有网站做新网站百度词条优化工作
  • 怎么看网站是谁家做的百度快照收录入口
  • 网站通栏广告素材营销型网站建设的价格
  • 青岛城乡建设委员会网站深圳市昊客网络科技有限公司
  • 关于做视频网站的一些代码深圳网络推广招聘
  • 李沧网站建设电话山西百度查关键词排名
  • 企业网站建设需要准备资料关键词看片
  • 智能建造技术专业学什么如何优化seo关键词
  • 广州中英文网站建设百度推广一年多少钱
  • 网站制作要学多久南宁seo营销推广
  • 建行手机重庆可靠的关键词优化研发
  • 网站怎么样排名希爱力5mg效果真实经历