当前位置: 首页 > news >正文

包头市住房和城乡建设局网站百度一下你就知道了百度一下

包头市住房和城乡建设局网站,百度一下你就知道了百度一下,制作一个网站步骤排版,做网站商城需要申请商标吗目录 1. hoare法 方法与步骤 代码实现 2. 挖坑法 方法与步骤 代码实现 3. 前后指针法 方法与步骤 代码实现 4. 快速排序的缺点与优化 1.快速排序的缺点 2.快速排序的优化 ① 三数取中法选 key 代码实现 ② 小区间优化 代码实现 5. 快速排序的非递归实现 附录…

目录

1. hoare法

方法与步骤

代码实现

2. 挖坑法

方法与步骤

代码实现

3. 前后指针法

方法与步骤

代码实现 

4. 快速排序的缺点与优化

1.快速排序的缺点

2.快速排序的优化

① 三数取中法选 key

代码实现

② 小区间优化

代码实现

5. 快速排序的非递归实现

附录﹡完整源码

快速排序递归实现

快速排序非递归实现


快速排序是霍尔大佬在1962年提出的排序方法,因其出色的排序效率使得它成为使用最广泛的排序算法。快速排序之所以敢叫做快速排序,自然是有一定的道理,今天我们就来看看快速排序是如何凌驾于其它算法之上的。

快速排序的基本思想是:任取待排序数列中的一个数作为 key 值,通过某种方法使得 key 的左边所有的数都比它小,右边的数都比它大;以 key 为中心,将 key 左边的数列与右边的数列取出,做同样的操作(取 key 值,分割左右区间),直至所有的数都到了正确的位置。

上述所提到的某种方法可以有很多种,例如:hoare法、挖坑法、前后指针法。它们虽然做法不相同,但做的都是同一件事——分割出 key 的左右区间(左边的数比 key 小,右边的数比 key 大)。

我们首先来看看霍尔大佬所用的方法——hoare法。

1. hoare法

方法与步骤

以数列 6,1,2,7,9,3,4,5,8,10 为例:

1.取最左边为 key ,分别有 left 和 right 指向数列的最左端与最右端;

2. right 先走,找到比 key 小的数就停下来;

3. left 开始走,找到比 key 大的数就停下来;

4. 交换 left 与 right 所在位置的数;

5.重复上述操作,right 找小,left 找大,进行交换;

 

6. right 继续找小;

7. left 继续找大,若与 right 就停下来;

8.交换二者相遇位置与 key 处的值;

此时一趟排序就完成了,此时的数列有两个特点:

1. key 所指向的值(6)已经到了正确的位置;

2. key 左边的数字都比 key 要小,右边的都比 key 要大;

接下来就是递归的过程了,分别对左右区间进行同样的操作:

代码实现

知道了详解步骤,用代码来实现并不困难,但是有很多很多的细节需要注意。(这里的代码未经优化,当前的代码有几种极端的情况不能适应)

void Swap(int* p, int* q)
{int tmp = *p;*p = *q;*q = tmp;
}void QuickSort(int* a, int begin, int end)
{//数列只有一个数,或无数列则返回if (begin >= end){return;}int left = begin;int right = end;int keyi = left;while (left < right){//右边先走while (left < right && a[right] >= a[keyi]){right--;}while (left < right && a[left] <= a[keyi]){left++;}Swap(&a[left], &a[right]);}Swap(&a[keyi], &a[left]);QuickSort(a, begin, left - 1);QuickSort(a, left + 1, end);
}

2. 挖坑法

挖坑法相比于hoare法,思路上更为简单易懂。

方法与步骤

还是以同样的数列 6,1,2,7,9,3,4,5,8,10 为例:

1. 先将第一个数存放到 key 中,形成一个坑位:分别有 left 和 right 指向数列的最左端与最右端; 

2.  right 先走,找到比 key 小的数,将该数丢到坑里;同时又形成了一个新的坑;

3. left 开始走,找到比 key 大的数,将该数丢到坑里;同时形成一个新的坑;

 4. right继续找小,进行重复的操作; 

5. left 找大;

6. right 找小;

7. left 找大;

8.若二者相遇就停下来;将 key 值放入坑;

至此,一趟排序已经完成,我们发现此时的数列与hoare具有相同的特点:

1. key 所指向的值(6)已经到了正确的位置;

2. key 左边的数字都比 key 要小,右边的都比 key 要大;

挖坑法、hoare、前后指针法完成一趟排序后都具有相同的特点,所以不同版本的快速排序不一样的只有单趟排序的实现,总体思路都是相同的。

代码实现

void QuickSort(int* a, int begin, int end)
{if (begin >= end){return;}int left = begin;int right = end;int key = a[left];int hole = left;//坑位while (left < right){while (left < right && a[right] >= key){right--;}a[hole] = a[right];hole = right;while (left < right && a[left] <= key){left++;}a[hole] = a[left];hole = left;}a[hole] = key;QuickSort(a, begin, hole - 1);QuickSort(a, hole + 1, end);
}

3. 前后指针法

方法与步骤

以同样的数列为例:

1. 取第一个值为 key ;有 prev 和 cur 分别指向数列开头和 prev 的下一个数;

2. cur 先走,找到比 key 小的数就停下来;

3. ++prev ,交换 prev 与 cur 位置的数;(前两次无需交换,因为自己与自己换没有意义)

4. 重复此步骤;

5. 直到 cur 走完整个数列,交换 prev 与 key 处的值;

至此,第一趟排序就结束了,又是与前两种方法相同的结果;

代码实现 

void QuickSort(int* a, int begin, int end)
{if (begin >= end){return;}int prev = begin;int cur = prev + 1;int keyi = begin;while (cur <= end){if (a[cur] < a[keyi] && ++prev != cur){Swap(&a[prev], &a[cur]);}cur++;}Swap(&a[keyi], &a[prev]);keyi = prev;QuickSort(a, begin, keyi - 1);QuickSort(a, keyi + 1, end);
}

4. 快速排序的缺点与优化

1.快速排序的缺点

我们用三种方式实现了快速排序,其实这三种方式并无明显的优劣之分。但是我们前面设计的快速排序其实是有两个缺点的:

1.在最坏情况下它的的效率极慢;

2.在数据量太大时会造成栈溢出。

那么什么情况是最坏情况呢?答案是,当数据本身就是有序的时候(无论是逆序还是顺序)。在最坏情况下,每次我们的 key 值都是最大或者最小,这样就会使 key 与数列的每个数都比较一次,它的时间复杂度为 O(n^2);

为什么会发生栈溢出呢?因为我们的快速排序是利用递归实现的,有递归调用,就要建立函数栈帧,并且随着递归的深度越深所要建立的函数栈帧的消耗就越大 。如这幅图所示:

2.快速排序的优化

① 三数取中法选 key

为了应对最坏情况会出现时间复杂度为 O(N^2) 的情况,有人提出了三数取中的方法。

旧方法中,我们每次选 key 都是数列的第一个元素。三数取中的做法是,分别取数列的第一个元素、最后一个元素和最中间的元素,选出三个数中不是最大也不是最小的那个数当作 key 值。

有了三数取中,之前的最坏情况立马变成了最好情况。

代码实现

由于hoare法、挖坑法、前后指针法最终的效果都相同且效率差异很小,所以就任意选取一个为例,其余两者都类似。

//三数取中的函数
int GetMidIndex(int* a, int begin, int end)
{int mid = (begin + end) / 2;if (a[begin] < a[mid]){if (a[mid] < a[end]){return mid;}else if (a[begin] > a[end]){return begin;}else{return end;}}else // a[begin] > a[mid]{if (a[mid] > a[end]){return mid;}else if (a[begin] < a[end]){return begin;}else{return end;}}
}
//hoare法
void QuickSort(int* a, int begin, int end)
{if (begin >= end){return;}int mid = GetMidIndex(a, begin, end);Swap(&a[mid], &a[begin]);int left = begin;int right = end;int keyi = left;while (left < right){while (left < right && a[right] >= a[keyi]){right--;}while (left < right && a[left] <= a[keyi]){left++;}Swap(&a[left], &a[right]);}Swap(&a[keyi], &a[left]);QuickSort(a, begin, left - 1);QuickSort(a, left + 1, end);
}

② 小区间优化

随着递归的调用越深入,此时有个很大的缺点就是函数栈帧的消耗很大。但是同时又有一个好处,就是越往下,数列就越接近有序,且此时每个小区间的数据个数特别少。

那么有什么办法可以取其长处避其短处呢?不知道你是否还记得插入排序的特点——数据越接近有序,效率就越高。并且,在数据量极少的情况下,时间复杂度为 O(N^2) 的插入排序与时间复杂度为 O(N*log N) 的快速排序基本没有什么区别。所以,我们干脆就在排序数据量少的数列时,采用插入排序代替。

代码实现

//三数取中的函数
int GetMidIndex(int* a, int begin, int end)
{int mid = (begin + end) / 2;if (a[begin] < a[mid]){if (a[mid] < a[end]){return mid;}else if (a[begin] > a[end]){return begin;}else{return end;}}else // a[begin] > a[mid]{if (a[mid] > a[end]){return mid;}else if (a[begin] < a[end]){return begin;}else{return end;}}
}//插入排序
void InsertSort(int* a, int n)
{for (int i = 0; i < n - 1; i++){int end = i;int tmp = a[end + 1];while (end >= 0){if (a[end] > tmp)         //大于tmp,往后挪一个{a[end + 1] = a[end];end--;}else{break;}}a[end + 1] = tmp;          //把tmp插入空隙}
}//hoare法
void QuickSort(int* a, int begin, int end)
{if (begin >= end){return;}if ((end - begin + 1) < 15){// 小区间用直接插入替代,减少递归调用次数InsertSort(a+begin, end - begin + 1);}else{int mid = GetMidIndex(a, begin, end);Swap(&a[mid], &a[begin]);int left = begin;int right = end;int keyi = left;while (left < right){while (left < right && a[right] >= a[keyi]){right--;}while (left < right && a[left] <= a[keyi]){left++;}Swap(&a[left], &a[right]);}Swap(&a[keyi], &a[left]);QuickSort(a, begin, left - 1);QuickSort(a, left + 1, end);}
}

两外两种方法的代码实现已打包完成,可在文末直接取用。

5. 快速排序的非递归实现

快速排序的非递归思路与递归相差无几,唯一不同的是,非递归用栈或队列模拟函数递归建立栈帧的过程。

void QuickSortNonR(int* a, int begin, int end)
{Stack st;StackInit(&st);StackPush(&st, begin);StackPush(&st, end);while (!StackEmpty(&st)){int right = StackTop(&st);StackPop(&st);int left = StackTop(&st);StackPop(&st);int keyi = PartSort1(a, left, right);//三种方法任选其一//int keyi = PartSort2(a, left, right);//int keyi = PartSort3(a, left, right);if (keyi + 1 < right){StackPush(&st, keyi + 1);StackPush(&st, right);}if (left < keyi - 1){StackPush(&st, left);StackPush(&st, keyi - 1);}}StackDestroy(&st);
}

附录﹡完整源码

快速排序递归实现

//交换函数
void Swap(int* p, int* q)
{int tmp = *p;*p = *q;*q = tmp;
}//三数取中
int GetMidIndex(int* a, int begin, int end)
{int mid = (begin + end) / 2;if (a[begin] < a[mid]){if (a[mid] < a[end]){return mid;}else if (a[begin] > a[end]){return begin;}else{return end;}}else // a[begin] > a[mid]{if (a[mid] > a[end]){return mid;}else if (a[begin] < a[end]){return begin;}else{return end;}}
}//插入排序
void InsertSort(int* a, int n)
{for (int i = 0; i < n - 1; i++){int end = i;int tmp = a[end + 1];while (end >= 0){if (a[end] > tmp)         //大于tmp,往后挪一个{a[end + 1] = a[end];end--;}else{break;}}a[end + 1] = tmp;          //把tmp插入空隙}
}// Hoare法
int PartSort1(int* a, int begin, int end)
{int mid = GetMidIndex(a, begin, end);Swap(&a[begin], &a[mid]);int left = begin, right = end;int keyi = left;while (left < right){while (left < right && a[right] >= a[keyi]){--right;}while (left < right && a[left] <= a[keyi]){++left;}Swap(&a[left], &a[right]);}Swap(&a[left], &a[keyi]);keyi = left;return keyi;
}// 挖坑法
int PartSort2(int* a, int begin, int end)
{int mid = GetMidIndex(a, begin, end);Swap(&a[begin], &a[mid]);int left = begin, right = end;int key = a[left];int hole = left;while (left < right){while (left < right && a[right] >= key){--right;}a[hole] = a[right];hole = right;while (left < right && a[left] <= key){++left;}a[hole] = a[left];hole = left;}a[hole] = key;return hole;
}//前后指针法
int PartSort3(int* a, int begin, int end)
{int mid = GetMidIndex(a, begin, end);Swap(&a[begin], &a[mid]);int keyi = begin;int prev = begin, cur = begin + 1;while (cur <= end){if (a[cur] < a[keyi] && ++prev != cur)Swap(&a[prev], &a[cur]);++cur;}Swap(&a[prev], &a[keyi]);keyi = prev;return keyi;
}//快速排序(递归)
void QuickSort(int* a, int begin, int end)
{if (begin >= end){return;}if ((end - begin + 1) < 15){// 小区间用直接插入替代,减少递归调用次数InsertSort(a + begin, end - begin + 1);}else{int keyi = PartSort1(a, begin, end);//int keyi = PartSort2(a, begin, end);//int keyi = PartSort3(a, begin, end);QuickSort(a, begin, keyi - 1);QuickSort(a, keyi + 1, end);}
}

快速排序非递归实现

#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
#include<stdbool.h>typedef int STDataType;typedef struct Stack
{STDataType* a;  //动态开辟数组int capacity; //记录栈的容量大小int top; //记录栈顶的位置
}Stack;//栈的初始化
void StackInit(Stack* ps);
//释放动态开辟的内存
void StackDestroy(Stack* ps);
//压栈
void StackPush(Stack* ps, STDataType data);
//出栈
void StackPop(Stack* ps);
//读取栈顶的元素
STDataType StackTop(Stack* ps);
//判断栈是否为空
bool StackEmpty(Stack* ps);// Hoare法
int PartSort1(int* a, int begin, int end)
{int mid = GetMidIndex(a, begin, end);Swap(&a[begin], &a[mid]);int left = begin, right = end;int keyi = left;while (left < right){while (left < right && a[right] >= a[keyi]){--right;}while (left < right && a[left] <= a[keyi]){++left;}Swap(&a[left], &a[right]);}Swap(&a[left], &a[keyi]);keyi = left;return keyi;
}// 挖坑法
int PartSort2(int* a, int begin, int end)
{int mid = GetMidIndex(a, begin, end);Swap(&a[begin], &a[mid]);int left = begin, right = end;int key = a[left];int hole = left;while (left < right){while (left < right && a[right] >= key){--right;}a[hole] = a[right];hole = right;while (left < right && a[left] <= key){++left;}a[hole] = a[left];hole = left;}a[hole] = key;return hole;
}int PartSort3(int* a, int begin, int end)
{int mid = GetMidIndex(a, begin, end);Swap(&a[begin], &a[mid]);int keyi = begin;int prev = begin, cur = begin + 1;while (cur <= end){if (a[cur] < a[keyi] && ++prev != cur)Swap(&a[prev], &a[cur]);++cur;}Swap(&a[prev], &a[keyi]);keyi = prev;return keyi;
}
void QuickSortNonR(int* a, int begin, int end)
{Stack st;StackInit(&st);StackPush(&st, begin);StackPush(&st, end);while (!StackEmpty(&st)){int right = StackTop(&st);StackPop(&st);int left = StackTop(&st);StackPop(&st);int keyi = PartSort1(a, left, right);//三种方法任选其一//int keyi = PartSort2(a, left, right);//int keyi = PartSort3(a, left, right);if (keyi + 1 < right){StackPush(&st, keyi + 1);StackPush(&st, right);}if (left < keyi - 1){StackPush(&st, left);StackPush(&st, keyi - 1);}}StackDestroy(&st);
}//栈的实现_函数定义void StackInit(Stack* ps)
{assert(ps);//初始化时,可附初值,也可置空ps->a = NULL;ps->capacity = 0;ps->top = 0;
}void StackDestroy(Stack* ps)
{assert(ps);//若并未对ps->a申请内存,则无需释放if (ps->capacity == 0)return;//释放free(ps->a);ps->a = NULL;ps->capacity = ps->top = 0;
}void StackPush(Stack* ps,STDataType data)
{assert(ps);//若容量大小等于数据个数,则说明栈已满,需扩容if (ps->capacity == ps->top){//若为第一次扩容,则大小为4,否则每次扩大2倍int newCapacity = ps->capacity == 0 ? 4 : ps->capacity * 2;STDataType* tmp = (STDataType*)realloc(ps->a, sizeof(STDataType) * newCapacity);if (tmp == NULL){perror("realloc fail");exit(-1);}ps->a = tmp;ps->capacity = newCapacity;}//压栈ps->a[ps->top] = data;ps->top++;
}void StackPop(Stack* ps)
{assert(ps);assert(!StackEmpty(ps));//出栈ps->top--;
}STDataType StackTop(Stack* ps)
{assert(ps);assert(!StackEmpty(ps));//返回栈顶的数据return ps->a[ps->top - 1];
}bool StackEmpty(Stack* ps)
{assert(ps);//返回topreturn ps->top == 0;
}

http://www.hotlads.com/news/1358.html

相关文章:

  • Java怎么做网站密码免费外链平台
  • 网站做直播个人怎么在百度上打广告
  • wordpress 实时预览seo零基础入门到精通200讲
  • 国外炫酷网站欣赏搜索引擎营销例子
  • 本地数据库搭建网站四川旅游seo整站优化
  • 网站后台语言广告设计网站
  • 大众点评怎么做团购网站太原网站关键词排名
  • 网站免费的有没有seo优化技术招聘
  • 域名申请要多久广州aso优化
  • 浙江五联建设有限公司网站软文发稿公司
  • 网站费用百度搜索关键词规则
  • 自己用dw做网站能加声音吗西安疫情最新数据
  • 网站建设要多少钱品牌友情链接发布平台
  • 我想自己做网站可以赚钱百度推广的优势
  • 南通门户网站建设方案社群营销
  • 电脑做网站教学如何进行网络营销策划
  • 阿里云重新备案注销主体还是注销网站职业培训机构哪家最好
  • 做网站和app有什么区别宁波seo外包服务商
  • 漫画做视频在线观看网站互站网
  • 台州外贸网站建设微博推广费用
  • 五里桥街道网站建设有哪些营销推广方式
  • html代码hr表示什么seo com
  • 网站二级目录怎么做301b站官方推广
  • 设计师找灵感的网站网站排名优化公司
  • 如何构建网站平台贵州seo推广
  • 网站建设完工确认书济南网站设计
  • 建筑企业网站要简约大气吗保定关键词排名推广
  • 双语网站模板下载专门看网站的浏览器
  • 温州网站优化指导深圳20网络推广
  • 摄影师作品网站有哪些电脑软件推广平台